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In memory of Cátia Silva, my beloved mother
You left fingerprints of grace on my life

You shan’t be forgotten
Amare et sapere vix deo conceditu



“What man is a man who does not make the world better?”
Balian d’Ibelin.

“You can see a mountain as one of two ways: as an insurmountable barrier
or as manner to grow further.”

Unknown.

“The characteristic of genuine heroism is persistency. All men have wandering impulses,
fits and starts of generosity and brilliance. But when you have resolved to be great, abide
by yourself, and do not weakly try to reconcile yourself with the world. Cause the heroic

cannot be the common, nor the common the heroic.”
Ralph Waldo Emerson.
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Abstract

Engineering structures have played an important role into societies across
the years. A suitable management of such structures requires automated structural
health monitoring (SHM) approaches to derive the actual condition of the system.
Unfortunately, normal variations in structure dynamics, caused by operational and
environmental conditions, can mask the existence of damage. In SHM, data nor-
malization is referred as the process of filtering normal effects to provide a proper
evaluation of structural health condition. In this context, the approaches based on
principal component analysis and clustering have been successfully employed to
model the normal condition, even when severe effects of varying factors impose dif-
ficulties to the damage detection. However, these traditional approaches imposes
serious limitations to deployment in real-world monitoring campaigns, mainly due
to the constraints related to data distribution and model parameters, as well as
data normalization problems. This work aims to apply deep neural networks and
propose a novel agglomerative cluster-based approach for data normalization and
damage detection in an effort to overcome the limitations imposed by traditional
methods. Regarding deep networks, the employment of new training algorithms
provide models with high generalization capabilities, able to learn, at same time,
linear and nonlinear influences. On the other hand, the novel cluster-based approach
does not require any input parameter, as well as none data distribution assumptions
are made, allowing its enforcement on a wide range of applications. The superior-
ity of the proposed approaches over state-of-the-art ones is attested on standard
data sets from monitoring systems installed on two bridges: the Z-24 Bridge and
the Tamar Bridge. Both techniques revealed to have better data normalization and
classification performance than the alternative ones in terms of false-positive and
false-negative indications of damage, suggesting their applicability for real-world
structural health monitoring scenarios.

Keywords: Structural health monitoring, Damage detection, Deep learning, Clus-
tering, Operational conditions, Environmental conditions



Resumo

Estruturas de engenharia têm desempenhado um papel importante para
o desenvolvimento das sociedades no decorrer dos anos. A adequada gerência e
manutenção de tais estruturas requer abordagens automatizadas para o monitora-
mento de integridade estrutural (SHM) no intuito de analisar a real condição dessas
estruturas. Infelizmente, variações normais na dinâmica estrutural, causadas por
efeitos operacionais e ambientais, podem ocultar a existência de um dano. Em
SHM, normalização de dados é frequentemente referido como o processo de fil-
tragem dos efeitos normais com objetivo de permitir uma avaliação adequada da
integridade estrutural. Neste contexto, as abordagens baseadas em análise de com-
ponentes principais e agrupamento de dados têm sido empregadas com sucesso na
modelagem dessas condições variadas, ainda que efeitos normais severos imponham
alto grau de dificuldade para a detecção de danos. Contudo, essas abordagens tradi-
cionais possuem limitações sérias quanto ao seu emprego em campanhas reais de
monitoramento, principalmente devido as restrições existentes quanto a distribuição
dos dados e a definição de parâmetros, bem como os diversos problemas relaciona-
dos a normalização dos efeitos normais. Este trabalho objetiva aplicar redes neurais
de aprendizado profundo e propor um novo método de agrupamento aglomerativo
para a normalização de dados e detecção de danos com o objetivo de superar as
limitações impostas pelos métodos tradicionais. No contexto das redes profundas,
o emprego de novos métodos de treinamento permite alcançar modelos com maior
poder de generalização. Em contrapartida, o novo algoritmo de agrupamento não
requer qualquer parâmetro de entrada e não realiza asserções quanto a distribuição
dos dados, permitindo um amplo dominínio de aplicações. A superioridade das abor-
dagens propostas sobre as disponíveis na literatura é atestada utilizando conjuntos
de dados oriundos de dois sistemas de monitoramento instalados em duas pontes
distintas: a ponte Z-24 e a ponte Tamar. Ambas as técnicas revelaram um melhor de-
sempenho de normalização dos dados e classificação do que os métodos tradicionais,
em termos de falsas-positivas e falsas-negativas indicações de dano, o que sugere
a aplicabilidade dos métodos em cenários reais de monitoramento de integridade
estrutural.

Palavras-chave: Monitoramento de integridade estrutural, Detecção de danos,
Aprendizado profundo, Agrupamento, Condições ambientais, Condições operacionais.
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1 Introduction

1.1 Context
Improved and more continuous condition assessment of civil structures has been

demanded by our society to better face the challenges presented by aging civil infrastruc-
ture. Structural management systems (SMSs) plan to cover all activities performed during
the service life of engineering structures, considering public safety, authorities’ budgetary
constraints, and transport network functionality. They possess mechanisms to ensure the
structures are regularly inspected, evaluated, and maintained in a proper manner. Hence,
a SMS is developed to analyze engineering and economic factors and to attend the author-
ities in determining how and when to make decisions regarding maintenance, repair, and
rehabilitation of structures (FARRAR; WORDEN, 2013; FIGUEIREDO; MOLDOVAN;
MARQUES, 2013).

However, the SMSs still depend on structural inspections, especially on the qual-
itative and not necessarily consistent visual inspections, which may impact the struc-
tural evaluation and, consequently, the maintenance decisions as well as the avoidance of
structural collapses (WENZEL, 2009). In the last years, the structural health monitoring
(SHM) discipline has emerged to aid the structural management with more reliable and
quantitative information. Although the SMS has already been accepted by the structural
managers around the world (CATBAS; GOKCE; GUL, 2012; WORDEN et al., 2015; HU
et al., 2016), even though with inherent limitations imposed by the visual inspections, the
SHM is becoming increasingly attractive due to its potential ability to detect damage at
varying stages and near real-time, with the consequent life-safety and economical benefits
(WORDEN et al., 2007; FARRAR; WORDEN, 2013).

The process involves the observation of a structural system over time using pe-
riodically sampled response measurements from an array of sensors, the extraction of
damage-sensitive features from these measurements, and the statistical analysis of these
features to discriminate the actual structural condition for short or long-time periods.
Then, once the normal condition has been successfully learned, the model can be used for
rapid condition assessment to provide, in nearly real time, reliable information regarding
the integrity of the structure.

The author believe that all approaches to SHM, as well as all traditional non-
destructive evaluation techniques, can be posed in the context of a statistical pattern
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recognition (SPR) problem. Thus, the SPR paradigm for the development of SHM so-
lutions can be described as a four-phase process (FARRAR; DOEBLING; NIX, 2001):
(1) operational evaluation, (2) data acquisition, (3) feature extraction, and (4) statistical
modeling for feature classification.

Particularly, in the feature extraction phase, damage-sensitive features (e.g., nat-
ural frequencies, autorregresive model parameters) are derived from the raw data, being
correlated with the severity of damage present in the monitored structure. Data com-
pression is also an inherent part of most feature extraction procedures. Unfortunately,
operational and environmental variations (e.g. temperature, operational loading, humid-
ity and wind speed) often arise as undesired effects in the damage-sensitive features and
usually mask changes caused by damage, which might negatively influence the proper
identification of damage (SOHN, 2007).

In that regard, data normalization procedures are required to surpass the effects of
operational and environmental variability, as an effort to improve the damage assessment
(CATBAS; GOKCE; GUL, 2012). This procedure is fully connected to the data acqui-
sition, feature extraction, and statistical modeling phases of the SHM process, including
a wide range of steps for mitigating (or even removing) the effects of normal variations
on the extracted features as well as for separating changes in damage-sensitive features
caused by damage from those caused by varying operational and environmental conditions
(SOHN; WORDEN; FARRAR, 2002; KULLAA, 2011). Without such data normalization
procedures, varying operational and environmental conditions will produce false-positive
indications of damage and quickly erode confidence in the SHM system. In general, the
treatment of such influences starts in data collection (by choosing less sensitive physical
parameters to varying normal condition), appears in feature extraction (by selection of
features with high sensitivity to damage and insensitive to normal variations), and fin-
ishes in the statistical modeling (remaining effects are accounted by automated procedures
inspired in machine learning field) (FARRAR; SOHN; WORDEN, 2001).

Therefore, for statistical modeling phase, several machine learning algorithms with
different working principles have been proposed (WORDEN; MANSON, 2007; FIGUEIREDO
et al., 2011). These machine learning approaches are often characterized as unsupervised
and output-only because they are trained only with damage-sensitive features related to
undamaged condition without any measurement directly related to operational and envi-
ronmental parameters. One of the reasons for this choice is the limited applicability of the
supervised learning, which carries out the training phase using data from both conditions
(undamaged and damaged), and the input-output approaches should know in advance
all parameters to be measured, respectively (PEETERS; ROECK, 2001; ZHOU et al.,
2008; KULLAA, 2009; HOSSEINABADI et al., 2014; VAN; KANG, 2015; D’ANGELO;
RAMPONE, 2016).
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The most traditional unsupervised approaches used in SHM field are, no doubt,
the ones based on Mahalanobis squared distance (MSD) and principal component anal-
ysis (PCA) (WORDEN; MANSON; FIELLER, 2000; MALHI; GAO, 2004; YAN et al.,
2005c; PURARJOMANDLANGRUDI; GHAPANCHI; ESMALIFALAK, 2014; XIANG;
ZHONG; GAO, 2015). They are linear algorithms adapted to act as data normalization
and damage detection techniques used to model, mainly, effects of linear variations. How-
ever, the linear behavior imposed for these techniques has limited their applicability in
SHM. If nonlinearities are present in the monitoring data, the MSD and PCA might fail
in modeling the normal condition of a structure because the former assumes the baseline
data follow a multivariate Gaussian distribution (or only one data cluster) and the princi-
pal components in the latter are independent only if the baseline data is jointly normally
distributed.

To extend the capabilities of the traditional methods, improved approaches based
on the auto-associative neural network (AANN), kernel PCA and Gaussian mixture mod-
els (GMMs) were proposed to deal with real-world structures and more complex SHM
applications such that the nonlinear influences on the damage-sensitive features could
be accounted for (HSU; LOH, 2010; MALHI; YAN; GAO, 2011; SHAO et al., ; REYN-
DERS; WURSTEN; ROECK, 2014; SANTOS et al., 2015; FIGUEIREDO; CROSS, 2013).
However, the required input parameters, as well as the usual constraints related to data
distribution, make these approaches hard to employ in real-world monitoring campaigns.
In some cases, despite of their model complexity and high computational cost, the training
procedures do not guarantees a proper modeling of normal conditions, resulting in poor
damage detection performance.

1.2 Related work
Traditionally, in most civil applications, the damage detection process is carried

out using physics-based methods (rooted in the structure dyncamics) and parametric ap-
proaches. However, in high complex structures, those methods may be impractical due to
the level of expertise and time required to their development (LAORY; TRINH; SMITH,
2011; WORDEN et al., 2015). On the other hand, non-parametric approaches rooted in
the machine learning field become an alternative, as they are very useful to find hidden
patterns in the data and computationally efficient (CATBAS; GOKCE; GUL, 2012; HU
et al., 2016). Herein, machine learning-based approaches addressing damage assessment
are discussed. In particular, the progressive development of approaches that address PCA-
based models is described. Moreover, the most relevant cluster-based methods and their
adaptation to damage detection in SHM are also introduced. From the current state-of-
the-art the main objectives are subsequently defined.
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1.2.1 Traditional approaches for damage detection

Principal component analysis is a common method to perform data normaliza-
tion and feature classification without directly measure the sources of variability. Yan
et al. (YAN et al., 2005a) present a PCA-based approach to model linear environmental
and operational influences using only undamaged feature vectors. The number of principal
components of the vibration features is implicitly assumed to correspond to the number of
independent factors related to the normal variations. A further extension of the proposed
method is presented in (YAN et al., 2005b). In this case, a local extension of PCA is used
to learn nonlinear relationships by applying a local piecewise PCA in a few regions of the
feature space. Although both approaches demonstrate adequate damage detection perfor-
mance, the use of PCA imposes serious limitations in the employment of the proposed
approaches, such as: only linear transformations can be performed through the orthogonal
components; as larger the variance of the component, the greater its importance (in some
cases this assumption is untrue); and scale variant (SHLENS, 2002).

To overcome the PCA limitations and detect damage in structures under chang-
ing environmental and operational conditions, an output-only vibration-based damage
detection approach was proposed by Deraemaeker et al. (DERAEMAEKER et al., 2008).
Two types of feature extraction based on automated stochastic subspace identification
and Fourier transform are used as damage sensitive-features, as well as the environmental
effects and the damage detection are carried out by factor analysis (FA) and a statisti-
cal process control, respectively. The results demonstrate that when FA is applied to deal
with normal variations both type of features provide reliable damage classification results.
However, this approach has been tested only using a numerical model of bridge, which
does not ensure its performance in real monitoring scenarios. Furthermore, the FA is also
able to learn linear influences as linear PCA.

Auto-associative neural network (AANN) is a nonlinear version of PCA intended
to perform feature extraction, dimensionality reduction, and damage detection of mul-
tivariate data. As demonstrated by Krammer (KRAMER, 1991), the AANN is capable
to perform, intrinsically, a nonlinear PCA (NLPCA), as it characterizes the underlying
dependency of the identified features on the unobserved operational and environmental
factors. Worden (WORDEN, 1997) developed a novelty detection technique by applying
AANN to learn the normal condition of structures. Once the model is trained, the residual
error tends to increase when damaged cases are presented. A later study (FIGUEIREDO
et al., 2011) applied the AANN to model nonlinearities in a laboratory structure under
simulated effects of variability. In this study, the AANN was not able to modeling, prop-
erly, the normal condition, which was verified in terms of Type I/II errors (false-positive
and false-negative indications of damage). Zhou et al. (ZHOU; NI; KO, 2011) proposed a
new damage index to avoid the occurrence of errors. However, the results strongly depends
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on the type of features extracted.

The aforementioned drawbacks lead the research efforts to kernel-based machine
learning algorithms, which have been widely used in structure monitoring. The ones based
on support vector machines (SVM) have demonstrated high reliability and sensitivity to
damage. A supervised SVM method to detect damage in structures with a limited number
of sensors was proposed in (MITA; HAGIWARA, 2003). Khoa et al. (KHOA et al., 2014)
proposed an unsupervised adaptation to dimensionality reduction and damage detection
in bridges. Santos et al. (SANTOS et al., 2016b) carried out a comparison study on
kernel-based methods. The results demonstrated that those SVM-based approaches has
been outperformed by kernel PCA (KPCA), in terms of removing environmental and
operational effects and classification performance.

The KPCA is an alternative approach to perform NLPCA. The kernel-trick allows
to mapping the feature vectors to high dimensional spaces, which provides nonlinear
strengths to linear PCA. Cheng et al. (CHENG et al., 2015) applied KPCA to detect
damage on concrete dams subjected to normal variations. Similarly, novelty detection
methods were proposed in (OH; SOHN; BAE, 2009; YUQING et al., 2015) by applying
KPCA as a data normalization procedure. In these approaches, the problems related to
the choice of suitable damage index and estimation of some parameters are addressed.
However, the issues related to the choice of an optimal kernel bandwidth and the number of
retained components were not fully addressed. Reynders et al. (REYNDERS; WURSTEN;
ROECK, 2014) developed an alternative approach to detect damage and eliminate the
environmental and operational influences in terms of retained components, and presents
a complete scheme to assess the previous issues. However, this approach is not able to
completely remove the normal effects, as it deals with a fraction of the environmental and
operational effects.

1.2.2 Cluster-based approaches for damage detection

Over the years, the approaches based on the MSD has been widely used in real-
world monitoring campaigns due to its ability to identify outliers (WORDEN; MANSON,
2007; NGUYEN; CHAN; THAMBIRATNAM, 2014; ZHOU et al., 2015). The MSD-based
approach assumes that the normal condition can be modeled by a unique cluster from a
multivariate Gaussian distribution. In this context, an abnormal condition is considered
as a statistical deviation from the normal pattern learned during training phase as a
mean vector and a covariance matrix, allowing to infer whether the data were generated
by a source not related to the normal condition. However, as noticed in (FIGUEIREDO;
CROSS, 2013), when nonlinearities are present in the observations, the MSD fails in
modeling the normal condition of a structure because it assumes the baseline data as a
unique multivariate Gaussian distribution.
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A two-step damage detection strategy based on GMMs has been developed in
(FIGUEIREDO; CROSS, 2013; FIGUEIREDO et al., 2014b; SANTOS et al., 2016a)
and applied to long-term monitoring of bridges. In the first step, the GMM-based ap-
proach models the main clusters that correspond to the normal and stable set of un-
damaged conditions, even when normal variations affect the structural response. To learn
the parameters of GMMs, the classical maximum likelihood (ML) estimation based on
the expectation-maximization (EM) algorithm is adopted in (FIGUEIREDO; CROSS,
2013). This approach applies an expectation step and a maximization step until the log-
likelihood converges to a local optimum. Thus, the convergence to the global optimum is
not guaranteed.

To overcome the limitations imposed by EM, in (FIGUEIREDO et al., 2014b)
the parameter estimation is carried out using a Bayesian approach based on a Markov-
chain Monte Carlo method. In (SANTOS et al., 2016a), a genetic-based approach is
employed to drive the EM searching towards the global optimum. In these approaches,
as the parameters have been learned, a second step is performed to detect damage on
the basis of a MSD outlier formation considering the chosen main groups of clusters. The
problems concerning these algorithms is related to the number of required parameters to
be tuned, as well as their parametric behavior.

Silva et al. (SILVA et al., 2008) proposed a fuzzy clustering approach to detect
damage in an unsupervised manner. The principal component analysis and auto-regressive
moving average methods are used to data reduction and feature extraction purposes. The
normal condition is modeled by two different fuzzy clustering algorithms, the fuzzy c-
means clustering and the Gustafson-Kessel (GK) algorithms. The results demonstrated
that the GK algorithm outperforms the alternative approach and reveals a better gener-
alization performance. However, the damage severity is not properly assessed and both
approaches output a significant number of false-negative indications of damage.

1.3 Justification
The current state-of-the-art methods are limited to a restrict range of applications,

in such manner that linear methods can only be applied to structures under linear vari-
ations, as well as the nonlinear ones to structures under nonlinear effects. Some reasons
are related to the assumptions of the model made during the training phase that are not
fulfilled by the collected data (e.g., assumptions of data normality and dimensionality)
due to changes in structural response caused by normal operational and environmental
effects. Furthermore, the amount of parameters that require tuning are usually high, and
depend on the type of structure and effects altering the data amplitude. Thus, the avail-
able approaches do not provide general purpose models, requiring a high level of expertise
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and knowledge of the structure’s dynamic to decide which method is the most suitable
one to each kind of application.

1.4 Motivation
Currently, one of the biggest challenges for transition of SHM technology from

research to practice refers to the separation of changes in the feature amplitude caused
by damage from those caused by changing operational and environmental conditions. Ac-
tually, there are two main approaches to separate those changes. The first implies the
direct measure of the sources of variability (e.g., live loads, temperature, wind speed,
and/or moisture levels), as well as the structural time-response at different locations of
the structure. This input-output approach learns the structural conditions by establishing
a direct relation between the normal variations and the actual structural condition. How-
ever, such parameterized modeling is hard and complex to deploy in real situations due to
the complexity to discover and capture all sources of variability, which still not completely
understood (REYNDERS; WURSTEN; ROECK, 2014). The second approach, and the
one used in this dissertation, attempts to establish the existence of damage for cases when
measurements of the operational and environmental factors that influence the structure’s
dynamic response are not available or can not be obtained. Thus, the main purpose is to
eschew the measure of operational and environmental variations and physics-based mod-
els such as finite element analysis. The present work is motivated by the need of robust
unsupervised methods to identify damages in structures subjected to linear/nonlinear
variations using only the time-response data from undamaged condition.

1.5 Objectives
The main objectives of this work is to review, develop, and apply several machine

learning algorithms to data normalization purposes in the context of the SPR paradigm,
capable to detect damage on structures under unmeasured operational and environmental
factors. Furthermore, the focus of this work is on the implementation of algorithms that
analyze and learn the distributions of the extracted damage-sensitive features from the
raw data, in an effort to determine the structural health condition. To achieve these goals,
the particular objectives are listed below:

1. Overcome the limitations imposed by traditional methods based on PCA and cluster
analysis through application and development of novel machine learning algorithms
for statistical modeling that address the same principle as the traditional ones (i.e.,
novel methods to improve the current PCA- and cluster-based approaches).
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2. Enhance the literature of SHM concerned to damage assessment and identification
by comparing the proposed methods with traditional ones.

3. Apply the proposed methods on data sets from real-world structures subjected to
rigorous linear/nonlinear effects, as a means of testing their performance and estab-
lish comparisons.

Note that even though these procedures might be applied to infrastructure of
arbitrary complexity (such as mechanical, aeronautical and naval structures), in this case
the procedures are specially posed in the context of bridge applications.

1.6 Original contributions
Many research works have been proposed to improve the damage detection and

identification. However, some issues still not completely addressed and treated. In that
regard, the main original contributions of this work are the following:

1. Fulfil the gap in literature for robust methods able to remove linear/nonlinear vari-
ations for damage detection purposes by proposing two non-parametric algorithms
based on deep neural networks and agglomerative clustering, highlighting the fact
that the cluster-based method was the one totally designed by the author.

2. The deep neural network can be faced as the first application of deep stacked au-
toencoders (DSA) as a data normalization procedure in the context of SHM, which
it is intended to overcome the limitations related to the traditional PCA-based
approaches.

3. The novel agglomerative concentric hypersphere (ACH) algorithm aims to model
the normal conditions of a structure by clustering similar observations related to
the same structural state at a given period of time. This straightforward method
does not require any input parameter, except the training data matrix, as well as
none assumptions related to data distribution are made.

4. Two deterministic initialization procedures rooted on eigenvectors/eigenvalues de-
composition and an uniform data sampling are presented. Furthermore, a random
initialization is also introduced. These mechanisms are intended to support the ini-
tial guess for the clustering procedure.

5. Compare the proposed approaches with state-of-the-art ones on the basis of Type
I/Type II error (false-positive and false-negative indications of damage, respectively)
trade-off in two real-world standard data sets from Z-24 Bridge, Switzerland, and
Tamar Bridge, United Kingdom.
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The results indicate that the proposed approaches has overcome the traditional
ones in terms of damage classification and robustness to deal with nonlinear effects caused
by normal variations. Furthermore, the proposed cluster-based algorithm demonstrates
to be capable to provide physical interpretations about structural conditions, allowing a
better understanding of operational and environmental sources of variability.

1.7 Organization of dissertation
The remainder of this dissertation is organized as follows. Chapter 2 summarizes

the SPR paradigm for SHM and presents the main PCA- and cluster-based algorithms for
data normalization, as well as their corresponding damage detection strategies. Chapter
3 derives the improved proposed approaches for increasing the performance of traditional
methods. Chapter 4 is devoted to describe the data sets used as damage-sensitive features
from the Z-24 Bridge and Tamar Bridge. Chapter 5 describes the experimental results
and carries out comparisons and discussions. Finally, Chapter 6 summarizes the main
conclusions and contributions of this dissertation, as well as figure out future research
topics and presents the published works that support this dissertation.
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2 Statistical pattern recognition for struc-
tural health monitoring

The SHM research community agree that all approaches to SHM can be seen
in the context of a pattern recognition problem, which aims to provide not only rea-
sonable answers for all possible inputs, but also infer explanation and formalization of
the relationships deriving that answers. Thus, the SPR paradigm for the development of
SHM applications is usually described as a four phase process, as illustrated in Figure 1
(FIGUEIREDO, 2010; FARRAR; WORDEN, 2013). These phases are briefly described
below, giving more attention to the fourth phase, which is the main focus of this work.
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Figure 1 – Flowchart of SPR paradigm for SHM (FIGUEIREDO, 2010).

2.1 Operational evaluation
The main goal of operational evaluation phase it provide answers to four questions

regarding the implementation of a monitoring system:

1. What is the life-safety and/or economic justification for performing the structural
health monitoring?

2. How is damage defined for the system being investigated and, for multiple damage
possibilities, which cases are of the most concern?
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3. What are the conditions, both operational and environmental, under which the
system to be monitored functions?

4. What are the limitations on acquiring data in the operational environment?

In that regard, operational evaluation seeks to set the boundaries and limitations
on the kind of monitored parameters, aiming to determine how the monitoring will be ac-
complished. It enables to reduce time and cost efforts during posterior phases, allowing to
determine the appropriate features to be extracted from the system being monitored and
attempts to exploit unique features of the damage that is to be detected. Otherwise, later
phases would be carried out without any reliability in the monitoring system designed.

2.2 Data acquisition
The data acquisition portion of the SHM process involves selecting the exci-

tation methods, the sensor types, number and locations, as well as the data acquisi-
tion/storage/transmittal hardware. This portion of the process will be application-specific.
Economic factors play the major role during acquisition of the hardware to be used for
the SHM system. The sensor sensitivity to low level excitation, the data interrogation
procedures, as well as the interval at which data should collected are other issues that
must be addressed. For example, in applications where life-safety is a critical effort, such
as earthquake monitoring, it may be prudent to collect data immediately before and at
periodic intervals after a large event. On the other hand, if identify slightly changes in
stiffness and geometric properties is the main concern, then it may be necessary to collect
data almost continuously at relatively short time intervals once some critical crack has
been identified. The kind of strategy is highly dependent of the questions addressed dur-
ing operational evaluation. All these contents can affect more or less directly the readings
collected, regarding the presence and location of damage.

2.3 Damage-sensitive feature extraction
The part of the SHM process that has demanded high research efforts is the iden-

tification of data features that allows one to distinguish between undamaged and dam-
aged states of the monitored structure (DOEBLING et al., 1996; SOHN et al., 2004).
A damage-sensitive feature is some quantity extracted from the structural response data
that is correlated with the presence of damage in a structure (e.g., modal parameters,
maximum displacements, regression model parameters and residual errors), indication
the presence (or not) of damage in a structure. An adequate damage-sensitive feature will
vary consistently in accordance with the level of damage in the structure. However, the
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type of feature differs from the kind of structure and the objective of monitoring. Fun-
damentally, the feature extraction process is based on fitting some model, either physics-
or data-based, to the measured response data. The parameters of these models, or the
predictive errors associated with them, become the damage-sensitive features. Generally,
a degree of signal processing is required in order to extract effective features.

2.4 Statistical modeling for feature classification
Undoubtedly, the portion of the SHM process with least attention in the tech-

nical literature is concerned to the development of statistical models for discrimination
between features from the undamaged and damaged structures. Statistical modeling for
feature classification is concerned with the implementation of algorithms that analyze the
distributions of the extracted features in an effort to determine the structural condition at
a given period of time. The functional relationship between the selected features and the
damage state of the structure is often difficult to define based on physics-based engineering
analysis procedures. Therefore, the statistical models are derived using machine learning
techniques. These algorithms usually fall into three categories: (i) group classification, (ii)
regression analysis, and (iii) outlier or novelty detection. The appropriate algorithm to
use depends on the ability to perform supervised or unsupervised learning. In the context
of SHM applications, supervised learning is referred to the case where examples of data
from damaged and undamaged conditions are available; group classification and regression
analysis are often used for this purpose. On the other hand, unsupervised learning arises
when only data from the undamaged structure are available for training, where outlier
or novelty detection methods are the primary class of algorithms used in this situation.
However, for high capital expenditure infrastructures, such as civil ones, the unsupervised
learning are often required because only data from the undamaged condition are available.

In SHM, for general purposes, the training matrix X ∈ R𝑛×𝑚 is composed of
𝑛 observations under operational and environmental variability when the structure is
undamaged, where 𝑚 is the number of features per observation obtained during the feature
extraction phase. The test matrix Z ∈ R𝑣×𝑚 is defined as a set of 𝑡 observations collected
during the undamaged/damaged conditions of the structure. Note that an observation
represents a feature vector encoding the structural condition at a given time, and a data
cluster represents a set of feature vectors corresponding to a global normal and stable
state condition of the structural system. In follow, some of the main machine learning
algorithms for statistical modeling are briefly described.
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2.4.1 Linear principal component analysis

An output-only technique that has been applied for eliminating environmental
influences on features is linear principal component analysis. This multivariate statistical
procedure aims to estimate a linear static relationship between the extracted features and
the unknown normal influences by reducing the dimensionality of the original input data
through a linear projection onto a lower dimensional space. This linear map allows one
to remove the normal variations in terms of retained components. In the SHM field, PCA
has been used for several purposes (feature selection, feature cleansing and visualization).
Herein, PCA is used as a data normalization method.

Assuming the training data matrix X decomposed in the form of (JOLLIFFE,
2002)

X = TU𝑇 =
𝑚∑︁

𝑖=1
t𝑖u𝑇

𝑖 , (2.1)

where T is called the scores matrix and U is a set of 𝑚 orthogonal vectors, u𝑖, also
called the loadings matrix. The orthogonal vectors can be obtained by decomposing the
covariance matrix of X in the form of Σ = UΛU𝑇 , where Λ is a diagonal matrix containing
the ranked eigenvalues 𝜆𝑖, and U is the matrix containing the corresponding eigenvectors.
The eigenvectors associated with the higher eigenvalues are the principal components of
the data matrix and they correspond to the dimensions that have the largest variability
in the data. Basically, this method permits one to perform an orthogonal transformation
by retaining only the principal components 𝑑 (≤ 𝑚), also know as the number of factors.
Precisely, choosing only the first 𝑑 eigenvectors, the final matrix can be rewritten without
significant loss of information in the form of

X = T𝑑U𝑇
𝑑 + E =

𝑑∑︁
𝑖=1

t𝑖u𝑇
𝑖 + E, (2.2)

where E is the residual matrix resulting by the 𝑑 factors. The coefficients of the linear
transformation are such that if the feature transformation is applied to the data set and
then reversed, there will be a negligible difference between the original and reconstructed
data.

In the context of data normalization, the PCA algorithm can be summarized as
follows: the loadings matrix is obtained from X, the test matrix Z is mapped onto the
feature space R𝑑 and reversed back to the original space R𝑚, the residual matrix E is
computed as the difference between the original and the reconstructed test matrix

E = Z − (ZU𝑑) U𝑑, (2.3)
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and finally in order to establish a quantitative measure of damage, the structural health
condition is discriminated by generating a damage indicator (DI) and classifying through
a threshold. For the 𝑙 feature vector (𝑙 = 1, 2, ..., 𝑣), a DI is adopted in the form of the
squared root of the sum-of-square errors (Euclidean norm):

DI(𝑙) = ‖ 𝑒𝑙 ‖ . (2.4)

If 𝑙 feature vector is related to the undamaged condition, 𝑧𝑙 ≈ 𝑧𝑙 and 𝐷𝐼 ≈ 0.
On the other hand, if the feature vector comes from the damaged condition, the residual
errors increase, and the DI deviates from zero, thereby indicating an abnormal condition
in the structure.

Therefore, the classification is performed using a linear threshold for a certain level
of significance. In this work, the threshold is defined for 95% of confidence on the DIs tak-
ing into account only the baseline data used in the training process. Thus, if the approach
has learned the baseline condition, then it is statistically guaranteed approximately 5% of
misclassifications in the DIs derived from undamaged observations not used for training.

2.4.2 Auto-associative neural network

The AANN is trained to characterize the underlying dependency of the extracted
features on the unobserved operational and environmental factors by treating that unob-
served dependency as hidden intrinsic variables in the network architecture. The AANN
architecture consists of three hidden layers: the mapping layer, the bottleneck layer, and
de-mapping layer.

While PCA is restricted to mapping only linear correlations among variables,
AANN can reveal the nonlinear correlations present in the data. If nonlinear correlations
exist among variables in the original data, the AANN can reproduce the original data
with greater accuracy and/or with fewer factors than PCA. This NLPCA can be achieved
by training a feed-forward neural network to perform the identity mapping, where the
network outputs are simply the reproduction of network inputs. Thus, this architecture
is a special case of autoencoder (Figure 2).

In the context of data normalization for SHM, the AANN (SOHN; WORDEN;
FARRAR, 2002) is first trained to learn the correlations between features from the train-
ing matrix X. Then, the network should be able to quantify the unmeasured sources of
variability that influence the structural response. This variability is represented at the bot-
tleneck output, where the number of nodes (or factors) should correspond to the number
of unobserved independent factors (e.g., wind speed, temperature, loading) that influence
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Figure 2 – Schematic representation of an AANN (SOHN; WORDEN; FARRAR, 2002).

the structural response. Second, for the test matrix Z, the residual matrix E is given by

E = Z − Ẑ, (2.5)

where Ẑ corresponds to the estimated feature vectors that are the output of the network.
The DIs are calculated using the Equation (2.4) on the residuals from E. The threshold
is defined in accordance to described in Section 2.4.2.

2.4.3 Kernel principal component analysis

An improved approach to perform NLPCA is based on kernel PCA. Proposed by
Reynders (REYNDERS; WURSTEN; ROECK, 2014) for eliminating environmental and
operational influences from damage-sensitive features, this technique has demonstrated
ability to learn more slight nonlinear dependencies than the AANN.

The main intuition behind this method is related to the realization of the linear
PCA in some high dimensional feature space ℱ . Since ℱ is nonlinear in relation to input
space, the contour lines of constant projections onto the principal eigenvector become
nonlinear in input space. Crucial to KPCA is the fact that there is no need to carry
out the map into ℱ . All necessary computations are carried out by the use of a kernel
function 𝑄 in the input space. Figure 3 compares the space projection on the linear PCA
and KPCA.

The radial bases function (RBF) (KEERTHI; LIN, 2003) is the most common
kernel function used to nonlinear mapping. This kernel maps examples into a higher
dimensional space so it can handle the case when the relation between class labels and



Chapter 2. Statistical pattern recognition for structural health monitoring 16

linear PCA

kernel  PCA

k(x,y) = (x y)

R
2

R
2

k

e.g. k(x,y) = (x y)d

Φ  
F

·

·

Figure 3 – The basic idea behind KPCA (SCHOLKOPF; SMOLA; MULLER, 1998).

attributes is nonlinear. The RBF kernel can be expressed by (CHANG; LIN, 2011)

𝑄(x𝑖, x𝑦) = exp (−𝛾 ‖ x𝑖 − x𝑗 ‖2), 𝛾 > 0, (2.6)

where 𝛾 is a kernel parameter that controls the bandwidth of the inner product matrix
𝑄. An optimal value of 𝛾 can be estimated by requiring that the corresponding inner
product matrix is maximally informative as measured by Shannon’s information entropy.
The detailed steps to estimate the optimal value of 𝛾 can be found in (REYNDERS;
WURSTEN; ROECK, 2014).

In the context of SHM, the input training matrix X is mapped by 𝜑: X → ℱ
to a high dimensional feature space ℱ . The linear PCA is applied on the mapped data
𝒯Φ = {𝜑(x1), ..., 𝜑(x𝑛)}. The computation of the principal components and the projection
on these components can be expressed in terms of dot products, thus the RBF kernel
function can be employed. The KPCA trains the kernel data projection

U = 𝐴𝑇 𝑄(x) + 𝑏, (2.7)

where 𝐴 is the projection matrix, 𝑏 is the bias vector and 𝑄(x) is the kernel function
centered in the training vectors. The kernel mean squared reconstruction error, which
must be minimized, is defined such that

𝜀𝐾𝑀𝑆(𝐴, 𝑏) = 1
𝑛

𝑛∑︁
𝑖=1

‖ 𝜑(x𝑖) − 𝜑(x𝑖) ‖2, (2.8)
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where the reconstructed vector 𝜑(x) is given as a linear combination of the mapped data
𝒯Φ

𝜑(x) =
𝑛∑︁

𝑖=1
𝛽𝑖𝜑(x𝑖), 𝛽 = 𝐴(u𝑖 − 𝑏). (2.9)

In contrast to the linear PCA, the explicit projection from the feature space ℱ to
the input space usually does not exist (SCHOLKOPF; SMOLA, 2001).

For the test matrix Z, the residual matrix E is given by

E = 𝜑(Z) − 𝜑(Z), (2.10)

where 𝜑(Z) corresponds to the high dimensional feature vectors and 𝜑(Z) their corre-
sponding reconstruction after linear PCA. The DIs are calculated using the Equation
(2.4) on the residuals from E. The threshold is defined in accordance to described in
Section 2.4.2.

2.4.4 Mahalanobis squared-distance

Another well-known method for performing data normalization without any in-
formation regarding the environmental and operational influences is based on the Maha-
lanobis squared-distance (MSD) (WORDEN; MANSON; ALLMAN, 2003; FIGUEIREDO,
2010). The Mahalanobis distance differs from the Euclidean distance because it takes into
account the correlation between the variables and it does not depend on the scale of the
features. However, this model assumes that data follows a unique multivariate Gaussian
distribution, i.e., the data can be modeled by only one Gaussian cluster.

Considering the training data matrix X, a mean feature vector 𝜇 and covariance
matrix Σ are estimated. In the context of data normalization, the mean vector and covari-
ance matrix should encode all normal variations represented by the baseline data. Thus,
for a test data z𝑙, the MSD is used as a standard outlier analysis procedure, providing
DIs by (WORDEN, 1997)

DI(𝑙) = (z𝑙 − 𝜇) Σ−1 (z𝑙 − 𝜇)𝑇 . (2.11)

The main assumption is that if a test feature vector is obtained from data collected
on the damaged system that includes operational and environmental variability, similar
to those from training data, this vector will be further from the mean feature vectors
corresponding to the undamaged condition as quantified by the MSD. The classification
and threshold definition are realized in accordance to described in Section 2.4.2.
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2.4.5 Gaussian mixture models

To overcome the limitations imposed by MSD, Gaussian mixture models are usu-
ally employed. This algorithm carries out a model-based clustering, using multivariate
finite mixture models, that aims to capture the main clusters (or components) of features
that correspond to the normal and stable state conditions of a structure under operational
and environmental conditions. Compared to MSD, the GMM assumes that the data can
be modeled by a set of multivariate Gaussian distributions, allowing to learn nonlinear
relationships (Figure 4).
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Figure 4 – Comparison between MSD (left) and GMM (right) models (FIGUEIREDO et
al., 2014a).

Therefore, a finite mixture model, 𝑝 (x|Θ), is the weighted sum of 𝐾 > 1 compo-
nents 𝑝 (x|𝜃𝑘) in R𝑚,(MCLACHLAN; PEEL, 2000)

𝑝 (x|Θ) =
𝐾∑︁

𝑘=1
𝛼𝑘𝑝 (x|𝜃𝑘) , (2.12)

where 𝛼𝑘 corresponds to the weight of each component. These weights are positive 𝛼𝑘 > 0
with ∑︀𝐾

𝑘=1 𝛼𝑘 = 1. For a GMM, each component 𝑝 (x|𝜃𝑘) is represented as a Gaussian
distribution,

𝑝 (x|𝜃𝑘) =
exp

{︁
−1

2 (x − 𝜇𝑘)𝑇 Σ−1
𝑘 (x − 𝜇𝑘)

}︁
(2𝜋)𝑚/2

√︁
det (Σ𝑘)

, (2.13)

being each component denoted by the parameters, 𝜃𝑘 = {𝜇𝑘, Σ𝑘}, composed of the mean
vector, 𝜇𝑘 and the covariance matrix, Σ𝑘. Thus, a GMM is completely specified by the
set of parameters Θ = {𝛼1, 𝛼2, . . . , 𝛼𝐾 , 𝜃1, 𝜃2, . . . , 𝜃𝐾}.

The EM algorithm is the most widespread local search method used to estimate the
parameters of the GMMs (DEMPSTER; LAIRD; RUBIN, 1977; MCLACHLAN; PEEL,
2000). This method consists of an expectation step and a maximization step which are
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alternately applied until the log-likelihood (LogL), log 𝑝 (X|Θ) = log∏︀𝑛
𝑖=1 𝑝 (x𝑖|Θ), con-

verges to a local optimum (DEMPSTER; LAIRD; RUBIN, 1977). The performance of
the EM algorithm depends directly on the choice of the initial parameters Θ, which may
implies many replications of this method during an execution (FIGUEIREDO; JAIN,
2002). To select the best GMM by means of goodness-of-fit and parsimony, the Bayesian
information criterion (BIC) is used and minimized,(BOX; JENKINS; REINSEL, 2008)

BIC = −2 log 𝑝 (X|Θ) +
{︂

𝐾𝑚
[︂(︂

𝑚 + 1
2

)︂
+ 1

]︂
+ 𝐾 − 1

}︂
log (𝑛) . (2.14)

Similar to Akaike information criterion (AIC), BIC uses the optimal LogL function
value and penalizes for more complex models, i.e., models with additional parameters. The
penalty term of BIC is a function of the training data size, and so it is often more severe
than AIC.

For the damage detection process, and for each observation z𝑙, one needs to esti-
mate 𝐾 DIs. Basically, for each component 𝑘 discovered during training phase

DI𝑘(𝑙) = (z𝑙 − 𝜇𝑘) Σ−1
𝑘 (z𝑙 − 𝜇𝑘)𝑇 , (2.15)

where 𝜇𝑘 and Σ𝑘 represent the parameters from all the observations of the 𝑘-th com-
ponent, when the structure is undamaged even though under varying operational and
environmental conditions. Note that, each component is related to a specific source of
variability (e.g., traffic loading, wind speed, temperature and boundary conditions), which
allows to provide physical meanings for each component. Finally, for each observation, the
DI is given by the smallest DI estimated on each component

DI(𝑙) = min (DI1, DI2, · · · , DI𝐾) . (2.16)

Thus, it is expected that if the algorithm has learned the baseline condition, i.e., the
identified components suitably represent the undamaged and normal condition under all
possible operational and environmental conditions, for a defined threshold, the approach
should outputs less than 5% of false-positive alarms for undamaged data from test matrix.
Additionally, the threshold is defined as described in Section 2.4.2.
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3 Proposed machine learning algorithms for
data normalization

In SHM, the purpose of machine learning algorithms is to enhance the damage de-
tection in structures subjected to the presence of varying operational and environmental
conditions under which the system response is measured. The previous chapter was ded-
icated to the description of the SPR paradigm and the main statistical methods for data
normalization reported in literature. Herein, two novel machine learning algorithms for
statistical modeling are proposed. These approaches intend to improve the performance
of traditional methods based on PCA and cluster analysis.

3.1 Deep learning algorithms
Deep learning methods aim at learning feature hierarchies of features from higher

levels of the hierarchy formed by the composition of lower level features. They include
learning methods for a wide range of deep architectures using graphical models with
many levels of hidden variables (HINTON; SALAKHUTDINOV, 2006; BENGIO, 2009;
ERHAN et al., 2010). However, the main trend of this field is based on neural networks
with massive amount of hidden layers (BENGIO et al., 2007; RANZATO et al., 2007;
VINCENT et al., 2008; WESTON et al., 2012).

The big challenge for development of this field concerns to the training algorithms
used to build deep architectures. In virtually all instances of deep learning, the objective
function is a highly non-convex function of the parameters, with the potential for many
distinct local minima in the model parameter space. The main problem is that not all of
these minima provide equivalent results, due to the standard training algorithms (based
on random initialization) guide the searching towards areas with poor generalization per-
formance (BENGIO et al., 2007).

The breakthrough of the area was achieved by (HINTON; SALAKHUTDINOV,
2006; RANZATO et al., 2007; BENGIO et al., 2007) with development of a two-phase
training scheme: greedy layer-wise unsupervised pre-training followed by supervised fine-
tuning. First, each layer is pre-trained with an unsupervised algorithm that learns a
nonlinear transformation of its input (the output of the previous layer) and captures the
more relevant variations. Second, for the final training phase, the deep architecture is fine-
tuned with respect to a supervised training criterion using gradient-based optimization.
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This novel training scheme has dramatically increased the performance of such methods,
driving intense research efforts to the field (ERHAN et al., 2010), mainly to the unsuper-
vised branch. In this context, methods based on stacked autoencoders has demanded the
main attention on the last years.

3.1.1 Autoencoders

An autoencoder is a neural network that is trained to attempt to copy its input
to the output. Internally, it has a hidden layer h that describes a code used to represent
the input. The network may be viewed as consisting of two parts: an encoder function
h = 𝑓 (x) and a decoder that produces a reconstruction x̂ = 𝑔 (h). This architecture is
presented in Figure 5. If an autoencoder succeeds in simply learning to set 𝑔 (𝑓 (x)) = x
everywhere, then it is not especially useful. Instead, autoencoders are designed to be
unable to learn perfectly the input patterns. This is made by adding constraints to perform
only approximate copies of the input patterns into the output. Thus, the model is forced to
prioritize the most important characteristics of the data, allowing to learn useful properties
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Figure 5 – General scheme of a simple autoencoder (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Traditionally, autoencoders were used for dimensionality reduction or feature learn-
ing. Recently, theoretical connections between autoencoders and latent variable models
have brought autoencoders to the forefront of generative modeling. A common manner to
obtain useful representations is to constrain h to have smaller dimension than x. The case
where h have a greater dimension than x has not demonstrated to result in something
more useful than learn a simple identity function. An autoencoder whose code dimension
is less than the input dimension is called undercomplete. This representation forces the
autoencoder to capture the most salient features of the training data.
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The learning process is described simply as minimizing a loss function

𝐿 (x, 𝑔 (𝑓 (x))) = 1
𝜆𝑛

∑︁
∀x∈X

‖𝑔 (𝑓 (x)) − x‖2 , (3.1)

where 𝐿 is a loss function penalizing 𝑔 (𝑓 (x)) for being dissimilar from x, such as the mean
squared error, and 𝜆 is a hyperparameter which controls the asymptote slope. In this case,
an undercomplete autoencoder learns to span the principal subspace of the training data,
i.e., the same subspace as PCA. Autoencoders with nonlinear encoder functions 𝑓 and
nonlinear decoder functions 𝑔 can thus learn a more powerful nonlinear generalization
than KPCA, and even better than AANN.

3.1.2 Stacked autoencoders

Multilayer autoencoders are feed-forward neural networks with an odd number of
hidden layers (DEMERS; COTTRELL, 1992; HINTON; SALAKHUTDINOV, 2006) and
shared weights between the encoder and decoder layers (asymmetric network structures
may be employed as well). The middle hidden layer has a number of nodes equal to the
number of factors to be retained, 𝑑, as in PCA. The network is trained to minimize the
mean squared error between the input and the output of the network (ideally, the input
and the output are equal).

The goal of training is to perform, in the middle hidden layer (i.e., the bottleneck
layer), a lower dimensional representation of the input data, in such manner that it pre-
serves as much data structure as possible. The lower dimensional representation can be
obtained by extracting the node values in the middle hidden layer for a given point used
as input. In order to allow the autoencoder to learn a nonlinear mapping between the
high-dimensional and low-dimensional data representation, sigmoid activation functions
are generally used (except in the middle layer, where a linear activation function is usually
employed).

The term stacked autoencoders relates to the concept of stacking simple modules of
functions or classifiers, as proposed and explored in (WOLPERT, 1992; BREIMAN, 1996;
BENGIO et al., 2007), to compose a strong model. These simple models are independently
trained to learn specific tasks, and then they are “stacked” on top of each other in order
to learn more complex representations of the input patterns. Experimentally, stacked
autoencoders yield much better dimensionality reduction than corresponding shallow or
linear autoencoders (HINTON; SALAKHUTDINOV, 2006).

Typically, these networks are represented by many layers of nonlinear mapping,
characterizing a deep architecture with a high number of connections. Therefore, the usual
training based on backpropagation algorithms converge slowly and are likely to get stuck
in local minima. Thus, the previously presented two-phase training scheme is employed to
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overcome these problems. An example of the two-phase training is shown schematically
in Figure 6.

Figure 6 – Unsupervised layer-wise pre-training and fine adjustment of a nine-layer deep
architecture.

In the context of SHM, the DSA allows to learn more reliable representations of the
input vectors due to successively nonlinear transformations applied. The robust training
tends to generate a more powerful model capable to generalize the normal conditions from
training to the test data, performing better filtering of environmental and operational
variations. Furthermore, the problems related to traditional PCA-based approaches are
circumvented by this algorithm (i.e., assumptions of data normality and definition of
hyper parameters are not performed). The criterion to automatically define the number
of hidden nodes in each layer, as well as more details about the proposed architecture,
can be found in (MAATEN; POSTMA; HERIK, 2009).

Herein, for SHM, a nine-layer DSA is trained to represent, in the bottleneck layer,
low level features from training matrix X. These new features must characterize the hidden
factors that changed the underlying distribution of the structural dynamic response. For
the test matrix Z, the residual matrix E is built as stated in Equation (2.5), and the
resulting DIs are calculated by Equation (2.4). The threshold is defined in accordance to
defined in Section 2.4.2.
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3.1.3 Deep autoencoders and traditional principal component analysis

In Table 1, the approaches based on PCA are summarized by five general prop-
erties: (1) ability to derive nonlinear mappings and learning nonlinear relationships in
the data, (2) direct mapping between the original dimensional and the low dimensional
space, (3) strengths to perform adequate learning of linear and nonlinear dependencies,
(4) extraction of features that are strongly correlated to the data in original space, and
(5) the computational complexity regarding the main procedures of each technique. All
properties are discussed below.

Table 1 – Comparison of the different PCA-based approaches.

Characteristic DSA PCA AANN KPCA
Nonlinear mapping 3 7 3 3

Direct mapping 3 3 3 7

Generalization 3 7 7 7

Robust feature extraction 3 7 7 7

Complexity 𝒪 (𝑙𝑖𝑚𝑤) 𝒪 (𝑑3) 𝒪 (𝑖𝑚𝑤) 𝒪 (𝑛3)

The property 1 is concerned to the learning of nonlinear relationships in the data,
which for real monitoring scenarios where structure dynamics is highly influenced by non-
linear variations is a crucial issue. In that regard, as linear PCA performs only linear
orthogonal transformations it is not able to learn, properly, nonlinear sources of varying
normal conditions, resulting in inaccurate damage detection performance in many appli-
cations. On the other hand, the approaches based on DSA, AANN and KPCA can handle
this matter by different mechanisms, which ensure different levels of removing normal
variations.

From property 2 one can infer that some techniques are not able to specify a direct
mapping from the original dimension to the low dimensional space (or vice versa). It can
be pointed out as a disadvantage for two main reasons: (1) it is not possible to generalize
for held-out or new test data without performing a new mapping, as well as any insights
about the amount of normal variability retained from the mapping/demapping operation
can not be inferred. From that point of view, the approach based on KPCA is the only
one that does not fall into this property, due to the learning and mapping performed in
high dimensional space.

Generalization is related to the capacity of a technique to accurately learn patterns
and predict outcome values from previously unseen data. Thus, property 3 is regarded
to indicate whether technique is able or not to perform, correctly, the assessment of
data arising from new measurements. As demonstrated by (SANTOS et al., 2015), the
approaches based on PCA, AANN and KPCA have several limitations when evaluating
new structural conditions, mainly in the cases of extreme operational and environmental
factors. In contrast, deep neural networks have the ability to properly evaluate new data.
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That characteristic can be assigned to the robust training phase that allows a high quality
feature extraction.

One of the main qualities of deep neural networks is the robust nonlinear map-
ping/demapping of data, deriving compressed representation of the input variables. In
comparison, the traditional approaches to perform PCA do not allow a proper learning
of the relationships between the input variables mainly due to the training algorithms
and specific procedures that limit the kind of features to be extracted (e.g., linear PCA
applies only orthogonal transformations, as well as the backpropagation algorithm and
kernel mapping may not drive the parameter tuning towards global optimum). In that
regard, property 4 indicates whether techniques provide robust mapping/demapping to
compose strong features.

For property 4, Table 1 provides insight into the computational complexity of the
computationally most expensive algorithmic components. The computational complexity
is a issue of great importance to its practical applicability. If the memory or compu-
tational resources needed are too large, their application become infeasible. Thus, the
corresponding computational complexity is determined by the properties of the dataset
such as the number of samples and their dimensionality, as well as the input parameters
of each algorithm, such as the target dimensionality 𝑑 and the number of iterations 𝑖 (for
iterative techniques). In the case of neural networks, 𝑤 indicates the size of the model by
the number of weights and 𝑙 the number of layers. The computationally most demanding
part of PCA is the eigenvalue and eigenvector decompositions, which is performed using
a method in 𝒪 (𝑑3). Due to the kernel projection, KPCA performs an eigenanalysis of an
𝑛 × 𝑛 matrix by solving a semi-definite problem subjected to 𝑛 constraints, requiring a
learning algorithm in 𝒪 (𝑛3). Both DSA and ANN employ backpropagation, which has
a computational complexity of 𝒪 (𝑖𝑚𝑤). However, as DSA has a pre-training phase, its
complexity order increases to 𝒪 (𝑙𝑖𝑚𝑤).

From the discussion of the five general properties above, it is possible to derive
some considerations: (1) some techniques do not provide a direct mapping between the
original space and the mapped one, (2) when the number of factors to be retained is
close to the number of samples, 𝑑 ≈ 𝑛, nonlinear techniques have computational disad-
vantages compared to linear PCA, and (3) a considerable number of nonlinear techniques
suffer from high demands of computational efforts. From these observations, it is clear
that nonlinear techniques impose considerable demands on computational resources, as
compared to linear PCA. Considering the DSA-based approach, its application must be
concerned to the level of improvement in the data normalization and damage detection
performance, since the high computational resources required can limit the applicability
for real monitoring scenarios.
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3.2 Agglomerative clustering
The agglomerative clustering algorithms are part of a hierarchical clustering strat-

egy which treats each object as a single cluster, and iteratively merges (or agglomerates)
subsets of disjoint groups, until some stop criterion is reached (e.g., number of clusters
equal to one) (KAUFMAN, 1990; MAIMON; ROKACH, 2010). These bottom-up algo-
rithms create suboptimal clustering solutions, which are typically visualized in the form of
a dendrogram representing the level of similarity between two adjacent clusters, allowing
to rebuild step-by-step the resulting merging process. Any desired number of clusters can
be obtained by cutting the dendrogram properly.

Update distance
matrix

End
Number of

clusters = 1?

Start

Input measured
features

Compute distance
matrix

Merge closest
clusters

Yes

No

Set each point as 
a cluster

Figure 7 – Flow chart of agglomerative hierarchical clustering.

The common flow chart of an agglomerative clustering procedure is summarized
in Figure 7. Initially, every observation is defined as a centroid. Then, a similarity matrix
composed of the distances between each cluster is computed to determine which clusters
can be merged. Usually, this agglomerative process is repeated until only one cluster
remains. As described in (BERRY; LINOFF, 1997), when the cluster diameter is small,
the corresponding data group is defined more precisely as this group is composed by few
members strongly correlated. The fundamental assumption is that small clusters are more
coherent than large ones (BERRY; LINOFF, 1997; MANNING; RAGHAVAN; SCHüTZE,
2008).
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3.2.1 Agglomerative concentric hyperspheres

The ACH algorithm is an agglomerative cluster-based technique, working in the
feature space, composed of two main steps: (1) an off-line initialization and (2) bottom-up
clustering procedure. Depending on the type of initialization mechanism, the algorithm
becomes completely deterministic or random. The initialization has a direct influence on
the algorithm performance. Hereafter, all clusters are merged, in an iterative manner, by
evaluating the boundary regions that limit each cluster through inflation of a concentric
hypersphere. These two steps allow to automatically discover the number of clusters and,
therefore, no input parameters are required. Note that, none information regarding data
distribution is required. The entire clustering procedure is divided into three main phases:

(i) Centroid displacement. For each cluster, its centroid is dislocated to the position
with higher observation density, i.e. the mean of its observations.

(ii) Linear inflation of concentric hyperspheres. Linear inflation occurs on each centroid
by progressively increasing an initial hypersphere radius,

𝑅0 = log10

(︁
‖c𝑖 − x𝑚𝑎𝑥‖2 + 1

)︁
, (3.2)

where c𝑖 is the centroid of the 𝑖-th cluster, used as a pivot, and x𝑚𝑎𝑥 is its farthest
observation, such that ‖c𝑖 − x𝑚𝑎𝑥‖2 is the radius of the cluster centered in c𝑖. The
radius grows up in the form of an arithmetic progression (AP) with common differ-
ence equal to 𝑅0. The creation of new hyperspheres is set by a criterion based on
the positive variation of the observation density between two consecutive inflations,
defined as the inverse of variance; otherwise the process is stopped.

(iii) Cluster merging. If there is more than one centroid inside the inflated hypersphere,
all centroids are merged to create an unique representative centroid positioned at
the mean of the centroids’ position. On the other hand, if only the pivot centroid
is within the inflated hypersphere, this centroid is assumed to be on the geometric
center of a cluster, thus the merging is not performed.

For completeness, Figure 8 presents an example of the algorithm applied to a three-
component scenario with a five-centroid initial solution. First, in Figure 8a, the centroids
are moved to the center of their clusters, as indicated in the first phase. In Figures 8b
and 8c, two centroids are merged to form one cluster, as they are within the same inflated
hypersphere. On the other hand, in Figure 8d only the pivot centroid is located in the
center of a cluster, therefore the ACH algorithm does not perform the merge process. In
the case where the merging occurs, all centroids analyzed before are evaluated again to
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Figure 8 – ACH algorithm using linear inflation running in a three-component scenario.

infer if the new one is not badly positioned in another cluster or closer to a boundary
region.

The Algorithm 1 summarizes the proposed method. Initially, it identifies the clus-
ter to which each observation belongs and moves the centroids to the mean of their
observations. Then, a hypersphere is built on the pivot centroid and it is inflated until the
observation density decreases. Finally, the merges of all centroids within the hypersphere
is performed, by replacing these centroids by their mean. The process is repeated until
convergence, i.e. there is no centroid merging after the evaluation of all centroids or the
final solution is composed by only one centroid.

Note that, the main goal of the clustering step is to maximize the observation
density related to each cluster. In other words, to locate the positions with maximum
observation concentration, also known as mass center, in such manner that when a hyper-
sphere starts to inflate its radius, it reaches the decision boundaries of the cluster. This
process is also described by maximizing the cost function

max
𝐾∑︁

𝑘=1

(︃ ∑︁
x𝑖∈c𝑘

‖x𝑖 − c𝑘‖2

N𝑘

)︃−1

,

s.t. 𝑛 =
𝐾∑︁

𝑘=1
N𝑘,

1 ≤ N𝑘 ≤ 𝑛,

(3.3)

where c𝑘 is the 𝑘-th centroid, x𝑖 the 𝑖-th observation assigned to the 𝑘-th cluster and N𝑘

is the number of observations in the cluster 𝑘. The clustering procedure naturally carries
out the optimization of the cost function by means of density evaluation, thus its direct
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1 calcIndexes(C, X)
2 while not cover all elements of C do
3 move(C, X)
4 c𝑝𝑖𝑣𝑜 = nextCenter(C)
5 𝑟𝑎𝑑𝑖𝑢𝑠𝑖𝑛𝑖𝑡 = calcRadius(c𝑝𝑖𝑣𝑜, X)
6 𝑟𝑎𝑑𝑖𝑢𝑠, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦0, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1, 𝑑𝑒𝑙𝑡𝑎0, 𝑑𝑒𝑙𝑡𝑎1 = 0
7 repeat
8 𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑟𝑎𝑑𝑖𝑢𝑠 + 𝑟𝑎𝑑𝑖𝑢𝑠𝑖𝑛𝑖𝑡

9 H = calcHypersphere(C, c𝑝𝑖𝑣𝑜, X, 𝑟𝑎𝑑𝑖𝑢𝑠)
10 𝑑𝑒𝑛𝑠𝑖𝑡𝑦0 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1
11 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1 = calcDensity(H)
12 𝑑𝑒𝑙𝑡𝑎0 = 𝑑𝑒𝑙𝑡𝑎1
13 𝑑𝑒𝑙𝑡𝑎1 = |𝑑𝑒𝑛𝑠𝑖𝑡𝑦0 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1|
14 until (𝑑𝑒𝑙𝑡𝑎0 > 𝑑𝑒𝑙𝑡𝑎1);
15 reduce(C, H)
16 if merging occurred then
17 calcIndexes(C, X)
18 end if
19 end while

Algorithm 1: Summary of the ACH algorithm.

computation is not necessary. The convergence is guaranteed by gradual decreasing of
the observation density as the hypersphere keeps inflating. More theoretical details and
complexity analysis are provided in Appendix A and B, respectively.

3.2.1.1 Initialization procedures

Three procedures can be employed to choose the initial centroids, depending on the
application. The random initialization is performed by choosing 𝑝 < 𝑛 distinct observa-
tions from the training matrix as initial centroids. This is quite similar to the initialization
procedure often used in the K-means algorithm (MACQUEEN, 1967).

To accomplish a deterministic clustering, two non-stochastic initializations are
presented as well. The first one performs an eigenvector decomposition to create as many
centroids as the number of observations in the training set, through a divisive procedure,
quite similar to the one described in (HAMERLY; ELKAN, 2003). Primarily, the mean
value of all data points is divided in other two points generated by

𝑦𝑛𝑒𝑤 = 𝑦 ± u𝑖

√︃
2t𝑖,𝑖

𝜋
, (3.4)

where u𝑖 and t𝑖,𝑖 are the most significant eigenvector and eigenvalue, respectively, and 𝑦

the point being divided. Each new point is divided in other two points in opposite direc-
tions placed around dense regions of the feature space. The process is repeated until the
number of points is equal to 𝑝; then they are used as initial centroids. At the end of this
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divisive procedure, each point has moved towards the region of higher concentration of
observations, benefiting posterior clustering approaches. The second non-stochastic ini-
tialization divides the training matrix uniformly and chooses equally spaced observations
as the initial centroids. The gap between each chosen observation is a factor of the num-
ber of training observations, usually equal to ⌈𝑛/𝑝⌉. The selected observations are used
as initial centroids. The parameter 𝑝, in all cases, can be equal to ⌈𝑛/2⌉.

The damage detection process is carried out for each test observation z𝑙 by estimat-
ing 𝐾 DIs, as well as described in Section 2.4.5. However, in contrast to the GMM-based
approach, for each component 𝑘 discovered during training phase, the DI is calculated
using euclidean distance. Thus, for each observation, the smallest distance estimated on
each cluster learned is used as the actual DI.
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4 Experimental results and analysis

In this section, the performance of the proposed approaches is evaluated with
state-of-the-art ones based on PCA and cluster analysis. The methods are compared on
the basis of Type I and Type II errors and their capabilities to filter linear/nonlinear
changes, when dealing with operational and environmental effects, on standard data sets
from Z-24 and Tamar Bridges.

Initially, the test bed structures are described briefly. The set of parameters chosen
for each approach, as well as the main results, are presented by addressing each specific
scenario. In every cases, the analysis are carried out by taking into account the results of
PCA-based approaches separately from the cluster-based ones. Finally, for overall analysis
purpose, all methods are compared from their performances on both scenarios.

Additionally, to determine which initialization procedure is more suitable to be
employed with the ACH algorithm, a comparative study using the Z-24 Bridge data set
is also carried out. The referred data set was chosen due to the extreme nonlinear effects,
providing a reliable baseline to derive conclusions.

4.1 Test bed structures and data sets
In this work, the applicability and comparison between the proposed and state-

of-the-art approaches are evaluated using the damage-sensitive features extracted from
the Z-24 and Tamar Bridges. In the case of Z-24 Bridge, the standard data sets are
unique in the sense that they combine one-year monitoring of the healthy condition,
operational and environmental variability and realistic damage scenarios. In a different
manner, a monitoring system was carried out on the Tamar Bridge during almost two-
years, generating only data sets related to undamaged scenarios. In follow, these test
structures and their data sets are highlighted.

4.1.1 Z-24 Bridge data sets

The Z-24 Bridge was a post-tensioned concrete box girder bridge composed of
a main span of 30 m and two side-spans of 14m, as shown in Figure 9. The bridge,
before complete demolition, was extensively instrumented and tested with the purpose
of providing a feasibility tool for vibration-based SHM in civil engineering (PEETERS
J. MAECK, 2001). A long-term monitoring test was carried out, from 11 November 1997
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Figure 9 – Z-24 Bridge scheme (left) and picture (top right), as well as a damage scenario
introduced by anchor head failure (bottom right).

until 10 September 1998, to quantify the operational and environmental variability present
on the bridge and to detect damage artificially introduced, in a controlled manner, in the
last month of operation. Every hour, during 11 minutes, eight accelerometers captured the
mechanical vibrations of the bridge as well as an array of sensors measured environmental
parameters, such as temperature at several locations.

Progressive damage tests were performed in one-month time period (from 4 August
to 10 September 1998) before the demolition of the bridge to prove that realistic damage
has a measurable influence on the bridge dynamics,(PEETERS J. MAECK, 2001) as
summarized in Table 2. Note that the continuous monitoring system was still running
during the progressive damage tests, which permits one to validate the SHM system to
detect cumulative damage on long-term monitoring.

In this case, the natural frequencies of the Z-24 Bridge are used as damage-sensitive
features. They were estimated using a reference-based stochastic subspace identification
method on time series from the accelerometers (PEETERS; ROECK, 1999). The first
four natural frequencies estimated hourly from 11 November 1997 to 10 September 1998,
with a total of 3932 observations, are highlighted in Figure 10. The first 3470 observations
correspond to the damage-sensitive feature vectors extracted within the undamaged struc-
tural condition under operational and environmental influences. The last 462 observations
correspond to the damage progressive testing period, which is highlighted, especially in
the second frequency, by a clear drop in the magnitude of the frequency.

Note that the damage scenarios are carried out in a sequential manner, which
cause a cumulative degradation of the bridge. Therefore, in this work is assumed that
the bridge operates within its undamaged condition (baseline or normal condition), under
operational and environmental variability, from 11 November 1997 to 4 August 1998 (1–
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Table 2 – Structural damage scenarios introduced progressively (details in (FIGUEIREDO
et al., 2014a)).

Date Description
04-08-1998 Reference measurement I (before any damage scenario)
09-08-1998 After installation of the settlement system
10-08-1998 Pier settlement = 2 cm
12-08-1998 Pier settlement = 4 cm
17-08-1998 Pier settlement = 5 cm
18-08-1998 Pier settlement = 9.5 cm
19-08-1998 Foundation tilt
20-08-1998 Reference measurement II (after removal of the settlement system)
25-08-1998 Spalling of concrete (12 𝑚2)
26-08-1998 Spalling of concrete (24 𝑚2)
27-08-1998 Landslide at abutment
31-08-1998 Concrete hinge failure
02-09-1998 Anchor head failure I
03-09-1998 Anchor head failure II
07-09-1998 Tendon rupture I
08-09-1998 Tendon rupture II
09-09-1998 Tendon rupture III
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Figure 10 – First four natural frequencies of Z-24 Bridge. The observations in the interval
1-3470 are the baseline/undamaged condition (BC) and observations 3471-3932 are related
to damaged condition (DC) (FIGUEIREDO et al., 2014b).

3470 observations). On the other hand, the bridge is considered damaged from 5 August
to 10 September 1998 (3471–3932 observations). For the baseline condition period, the
observed jumps in the natural frequencies are associated to the asphalt layer, in cold
periods, which contributes, significantly, to the stiffness of the bridge. In this work, the
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existence of a bilinear behaviour in the natural frequencies for below and above freezing
temperature is nonlinearity (PEETERS; ROECK, 2001).

For generalization purposes, the feature vectors were split into the training and
test matrices. As shown in Figure 10, the training matrix, X3123×4, is composed of 90%
of the feature vectors from the undamaged condition. The remaining 10% of the feature
vectors are used during the test phase to make sure that the DIs do not fire off before the
damage starts. The test matrix, Z3932×4, is composed of all the data sets, even the ones
used during the training phase.

4.1.2 Tamar Bridge data sets

The Tamar Bridge (depicted in Figure 11) is situated in the south-west of the
United Kingdom and connects Saltash (Cornwall) with the city of Plymouth (Devon).
This bridge is a major road across the River Tamar and plays a significant role in the
local economy. Initially, in 1961, the bridge had a main span of 335 m and side spans of
114 m. If the anchorage and approach are included, the overall length of the structure
is 643 m. The bridge stands on two concrete towers with a height of 73 m and a deck
suspended at mid-height (CROSS et al., 2013).

Figure 11 – The Tamar Suspension Bridge viewed from cantilever (left) and River Tamar
margin (right).

Since 1961 the bridge structure was a steel truss supported vertically by a pair of
suspension cables. To meet a European Union Directive, where bridges should be capable
of carrying lorries of up to 40 tonnes, the bridge underwent a strengthening and widening
upgrade scheme, which was completed in 2001 (KOO et al., 2013). The upgrade consisted
of adding cantilevered lanes either side of the truss to provide a total of four lanes for
traffic and a footpath for pedestrians. The heavy composite deck was replaced by an
orthotropic steel deck and eight pairs of stay cables connected to the towers were added
to support the increased weight of the deck.
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To track the effects of the upgrade, various sensor systems were installed to extract
monitoring data such as tensions on stays, accelerations, wind velocity, temperature, de-
flection and tilt. Eight accelerometers were implemented in orthogonal pairs for four stay
cables and three sensors measured deck accelerations. The time series were stored with
a sampling frequency of 64 Hz at 10 minutes intervals (CROSS et al., 2013). The data
collected in the period from 1 July 2007 to 24 February 2009 (602 observations) were then
passed directly to a computer-based system and via a reference-based stochastic subspace
identification technique (PEETERS, 1999), the natural frequencies were estimated. The
first five natural frequencies obtained during the feature extraction phase are illustrated
in Figure 12.

Herein, there is no damaged observations known in advance (KOO et al., 2013),
and so it is assumed that all observations are extracted from the undamaged condition.
Therefore, only Type I errors can be identified. From a total amount of 602 observations,
the first 363 ones are used for statistical modeling in the training process (corresponding
to one-year monitoring from 1 July 2007 to 30 June 2008) and the entire data sets are
used in the test process, yielding a training matrix X363×5 (1–363 observations) and a test
matrix Z602×5 (1–602 observations).
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Figure 12 – First five natural frequencies obtained in the Tamar Bridge. The observations
in the interval 1–363 are used in the statistical modeling while observation 364-602 are
used only in the test phase (FIGUEIREDO et al., 2012).
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4.2 Parameter tuning
Although the ACH- and MSD-based approaches do not require any input param-

eters (except the training matrix), the remain ones work through some predefined pa-
rameters. One of the challenges for training deep networks is the large number of design
choices, such as connectivity, architecture and optimization method.

The choice of optimization also comes with a number of hyperparameters such as
learning rate and momentum. However, some automatic approaches have been developed
to addresses many of these issues. Herein, for the DSA-based approach, an undercomplete
nine-layer architecture using complete layer-wise connections was adopted, as well as
the number of units in each layer was automatically defined on basis of the input data
dimension. Therefore, for the Z-24 Bridge, the number of units per layer are 10, 7, 3 and 2,
as well as for the Tamar Bridge they are 11, 7, 3 and 2. Note that as the DSA is composed
of mapping and demapping layers the number of units in the first three mapping layers
are repeated in the last three demapping layers. Additionally, the stop criteria were the
number of epochs and gradient convergence, defined as 1000 and 10−7, respectively. All
constraints regarding the adopted architecture and parameter setting can be verified in
(MAATEN; POSTMA; HERIK, 2009).

For the AANN-based approach, a Levenberg–Marquardt back-propagation algo-
rithm was used to train the network. Several trainings with different initial conditions
were performed through approach described in (KRAMER, 1991) to increase the proba-
bility that the global minimum was achieved. Therefore, for the Z-24 Bridge, the network
has 6 units in each mapping and demapping layer and 4 units in the bottleneck layer. In
counterpart, for the Tamar Bridge, the network has 9 units in the mapping and demapping
layers, and 8 units in the bottleneck layer. The nodes in the bottleneck layer represent the
underlying unobserved variables driving the changes in the features such as the ambient
temperature (FIGUEIREDO; CROSS, 2013).

For linear PCA, the amount of variability retained is 95%, which can account ap-
proximately all normal variations. In the case of KPCA, the optimal kernel bandwidth can
be computed by the maximization of the information entropy (REYNDERS; WURSTEN;
ROECK, 2014). Thus, for the Z-24 Bridge, the optimal kernel parameter estimated was
0.384, as well as for the Tamar Bridge the value was 0.0142. In both scenarios, as per-
formed by (SANTOS et al., 2016c), 99% of variance was retained, which can account for
approximately all data variations in kernel space.

Finally, for the GMM-based approach, as recommended in (FIGUEIREDO; CROSS,
2013), to alleviate the drawbacks of the EM algorithm, during each execution of the EM,
10 repetitions are performed, each one running until 1000 iterations be reached or the LogL
converges. Also, the number of clusters explored via BIC was in the range 𝐾 ∈ 2, · · · , 15.
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4.3 Damage detection with hourly data set from the Z-24 Bridge

4.3.1 PCA-based approaches

For evaluation of the DSA-based approach with PCA-based ones, the number of
Type I and Type II errors for the test matrix are presented in Table 3. Considering a level
of significance of 5%, the DSA algorithm outputted the less amount of false alarms (even
more than the KPCA-based approach). Specifically, the DSA was able to perform the best
performance in terms of normalization of the normal variations with a number of Type I
errors less than 5% of the entire undamaged data. It is important to note that when data
normalization is well performed the corresponding number of misclassifications on data
derived from normal conditions must be 5%, at most, due to the threshold definition. If an
algorithm misclassify more than 5% of undamaged data, then it demonstrates problems
to learn the normal variations.

Table 3 – Number and percentage of Type I/II errors for PCA-based approaches using
the hourly data set from the Z-24 Bridge.

Approach Type I Type II Total
DSA 165 (4.76%) 4 (0.87%) 169 (4.30%)
PCA 173 (4.99%) 372 (80.52%) 545 (13.86%)
AANN 196 (5.65%) 16 (3.46%) 212 (5.39%)
KPCA 180 (5.19%) 4 (0.87%) 184 (4.68%)

The linear PCA provides the worst result in terms of error trade-off establishment,
impacting the total amount of errors (more than 13% of misclassifications). Although it
demonstrates a reasonable data normalization performance, its unacceptable sensitivity
to damage occurrence limits its application on real-world monitoring scenarios, mainly
when life-safety issues are a critical effort. On the other hand, the AANN demonstrates
problems for modeling the normal condition, resulting in more than 5% of Type I errors
and a poor damage classification performance, reaching more than 3% of Type II errors
and a total amount up to 5%.

In general terms, the DSA-based approach attains the best results when compared
to alternative ones, as can be noted by the improved performance achieved for minimiz-
ing the Type I errors, maintaining a reasonable number of Type II errors. Comparing
the DSA-based approach to the ones based on AANN and KPCA, it performs a better
modeling of normal condition due to the employed architecture and training algorithm.
The DSA maps the input data to a greater dimensional space and performs a gradual
dimensionality reduction, allowing to better model salient relationships. For SHM, this
kind of strength derive a better fitting of normal variations, resulting in robust damage as-
sessment. The two-phase training scheme drives the parameter tuning towards the global
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Figure 13 – Damage indicators along with a threshold defined over the training data for
Z-24 Bridge: (a) DSA-, (b) PCA-, (c) AANN- and (d) KPCA-based approaches.

optimum, providing a robust model capable to perform with high reliability classification
on data not used during training phase.

To verify the performance of DSA-based approach to remove operational and en-
vironmental effects, the DIs, derived from the entire test data, are shown in Figure 13.
In this case, the only approaches capable to establish a reliable monotonic relationship
between the DIs and the gradual increasing in the level of damage were the DSA- and
AANN-based approaches. On the other hand, the KPCA fails to establish this relation-
ship, as well as linear PCA. The main reason for their poor normalization performance is
related to the freezing effects arising from temperature variations, which cause problems
to learn, properly, the normal effects. Thus, such techniques are not recommended to
deployment in real applications.

4.3.2 Comparative study of the initialization procedures

To carry out a comparative study, the ACH was independently executed for the
three initialization procedures based on random, uniform and divisive strategies, as de-
scribed in Subsection 3.2.1.1. Table 4 summarizes the Type I and Type II errors for all
ACH initializations. The random initialization becomes the algorithm more sensitive to
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detect abnormal conditions as expressed by the low number of Type II errors (4); how-
ever, it is penalized with a high number of Type I errors (220), demonstrating a loss of
generalization capability. An alternative behavior is reached when deterministic initial-
ization procedures are applied. Basically, the uniform initialization demonstrates a high
degree of generalization and robustness to fit the normal condition at the cost of losing
sensitivity to detect anomalies, as given by a high number of Type II errors (19). On the
other hand, the divisive initialization establishes a trade-off between generalization and
sensitivity, reaching a low number of Type II errors (6) and maintaining an acceptable
number of Type I errors (188), which indicates effectiveness to model the normal condition
and to overcome the nonlinear effects. Furthermore, one can figure out that for levels of
significance around of 5% both random and divisive initializations are indicated, mainly
when the minimization of Type II errors is a critical effort.

Table 4 – Number of clusters and percentage of Type I and Type II errors for each ACH
initialization procedure using the hourly data set from the Z-24 Bridge.

Initialization 𝐾 Type I Type II Total
Random 5 220 (6.34%) 4 (0.86%) 224 (5.69%)
Uniform 6 159 (4.58%) 19 (4.11%) 178 (4.52%)
Divisive 3 188 (5.41%) 6 (1.29%) 194 (4.93%)

The DIs for the entire test data, along with a threshold defined over the training
data, is evidenced in Figure 14, regarding each initialization procedure. If data normal-
ization is well performed, it is statistically guaranteed less than 5% of misclassifications in
the DIs derived from undamaged observations not used for training. Therefore, excepting
when ACH is initialized with the uniform procedure, it outputs a monotonic relationship
in the amplitude of DIs related to the level of degradation accumulated on the bridge
along the time. In Figure 14b the freezing effects are highlighted by more evident peaks in
the DIs related to the data used in the training phase, indicating that the uniform initial-
ization does not allow an appropriate filtering of nonlinear effects. Note that, a nonlinear
effect is not necessarily related to a damaged condition; it can arise from a normal varia-
tion of physical parameters of the structure not taken into account during training phase.
On the other hand, when damage is presented in the form of an orthogonal component
that diverges from the normal condition under common operational and environmental
factors, it is detected as a non-observed effect, and thus an anomaly condition.

In relation to the number of data clusters, the ACH was able to find six, five, and
three clusters when coupled with uniform, random and divisive initializations, respectively.
Furthermore, the random and divisive initializations demonstrate to be more appropriate
due to their potential to benefit the clustering step, providing a proper learning of the nor-
mal condition, even when operational and environmental variability is present. However,
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Figure 14 – ACH damage indicators for different initialization procedures along with a
threshold defined over the training data: (a) random-, (b) uniform-, and (c) divisive-based
initialization procedures.

considering the best model as the one that establishes a trade-off between minimization of
the number of errors using less clusters as possible, the divisive initialization is the most
suitable model, as it accomplishes reliable results using a small number of clusters, being
more indicated when one wants to reach a balance of sensitivity and specificity rates.

4.3.3 Cluster-based approaches

For comparison purposes with well known cluster-based algorithms from the lit-
erature, the novel ACH coupled with divisive initialization is chosen to accomplish a

Table 5 – Number of clusters and percentage of Type I/II errors for cluster-based ap-
proaches using the hourly data set from the Z-24 Bridge.

Approach 𝐾 Type I Type II Total
ACH 3 188 (5.41%) 6 (1.29%) 194 (4.93%)
MSD 1 162 (4.66%) 191 (41.34%) 353 (8.97%)
GMM 7 210 (6.05%) 10 (2.16%) 220 (5.59%)
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Figure 15 – Damage indicators along with a threshold defined over the training data for
Z-24 Bridge: (a) ACH-, (b) MSD-, and (c) GMM-based approaches.

study with MSD- and GMM-based approaches. Therefore, to quantify the classification
performance, the Type I and Type II errors for the test matrix are presented in Table
5. Basically, for a level of significance around 5%, the ACH presents the best results in
terms of total number of misclassification, less than 5% of the entire test data. In turn, the
GMM shows an intermediate performance, attaining 5.59% of misclassified observations.
Concerning the ACH and GMM, one can verify that both provide a high sensitivity to
damage, although the ACH presents the smaller amount of misclassifications. In terms
of generalization, the ACH attains the best results when compared to GMM, as can be
inferred by the minimization of Type I errors. Nevertheless, the MSD provides the worst
result, misclassifying roughly 9% of the entire test data, demonstrating an inappropriate
level of sensitivity to damage, which for high capital expenditure engineering structures is
unacceptable due to the drastic consequences it may cause (e.g., undetected failures may
cause human losses).

To evaluate the ACH performance to model the normal condition and establish
comparisons, the DIs, taking into account the entire test data, are shown in Figure 15.
The ACH outputs a monotonic relationship in the amplitude of the DIs related to the
damage level accumulation, whereas the GMM fails to stablish this relationship. In the
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Figure 16 – Emphasis on monotonic relationship between the level of damage and the
amplitude of the damage indicators for ACH- (a) and GMM-based (b) approaches.

case of the MSD-based approach, patterns in the DIs caused by the freezing effects can be
pointed out, which indicate this approach is not able to attenuate, properly, the effects of
environmental variations. Thus, it demonstrates to be not effective to model the normal
condition.

Furthermore, for detaching the monotonic relationship derived by ACH, Figure
16 highlights the range of data not used for training purpose. The ACH maintains a
constant monotonic relationship with the gradual level of damage and the amplitude of
the DIs, even when operational and environmental variability is present; however, the
GMM misclassified undamaged observations throughout the track of observations not
used in the training phase, indicating a not proper learning of the normal condition.
On the other hand, all misclassified undamaged observations accomplished by ACH are
grouped in a well known fuzzy region that may exists in the boundary frontiers of the
quasi-circular clusters. This is explained by the nature of ACH-based approach. Although
the ACH aims to find out radially symmetric clusters, some data groups describe quasi-
circular groups of similar observations that present in their decision boundaries sparse
regions accomplishing observations deriving to a gradual change of structural state.

In terms of number of clusters, the GMM finds seven clusters (𝐾 = 7) related
to Gaussian components. However, the ACH accomplishes the best results with only
three clusters (𝐾 = 3), indicating the GMM has generalization problems, which can
be explained by a tendency of overfitting caused by a high number of clusters. When
evaluating cluster-based approaches, a trade-off between good fitting and a low number
of clusters is required, as the high number of clusters may lead to an overfitting; conversely,
low number of clusters may conduct to an underfitting.
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4.4 Damage detection with daily data set from the Tamar Bridge

4.4.1 PCA-based approaches

The data sets from the Z-24 Bridge are unique, as it was known a priori the
existence of damage. On the other hand, the data sets from the Tamar Bridge represent
the most common situation observed in real-world SHM applications on bridges, as there
is no indication of damage in advance.

Following the same procedure carried out in the previous section, the number of
Type I errors for the test matrix are presented in Table 6. The Type II errors are not
summarized herein as there is no indications about structural damage. The total number
of Type I errors is 27 (4.49%), 25 (4.15%), 30 (4.98%) and 73 (12.13%) for the DSA-,
PCA-, AANN- and KPCA-based approaches, respectively. Therefore, as the percentage
of errors given by the DSA is close to the 5% level of significance assumed in the training
process, one concludes that the DSA-based approach offers a model that properly learns
the normal variations, as well as linear PCA.

Table 6 – Number and percentage of Type I errors for PCA-based approaches using the
daily data set from the Tamar Bridge.

Approach Type I
DSA 27 (4.49%)
PCA 25 (4.15%)
AANN 30 (4.98%)
KPCA 73 (12.13%)

In contrast to the Z-24 Bridge, the Tamar was not influenced by extreme nonlin-
ear variations, allowing to learn its dynamic behavior using linear models, such as PCA
(FIGUEIREDO et al., 2012). Thus, the nonlinear approaches (DSA, AANN and KPCA)
tends to overfitting the training data, resulting in poor normalization performance of un-
damaged data not used for training. However, the DSA was the only method capable to
model the normal condition with high degree of reliability, reaching a total amount of
Type I errors very close to the ones outputted by linear PCA. It can be pointed out to
the robust training algorithm employed in the DSA-based approach, which provides an
adequate learning of the normal condition without compromise its generalization capa-
bilities. This characteristic has been noticed as one of the major advantages of two-phase
training algorithms for deep neural networks (ERHAN et al., 2010).

For an overall analysis purpose, the DIs for all observations in the test matrix are
shown in Figure 17. For the KPCA-based approach, a concentration of outliers in the
data not used in the training phase is observed, suggesting an inappropriate modeling of
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Figure 17 – Damage indicators along with a threshold defined over the training data for
Tamar Bridge: (a) DSA-, (b) PCA-, (c) AANN, and (d) KPCA-based approaches.

the normal condition. On the other hand, the DSA-, PCA- and AANN-based approaches
seems to output a random pattern among the expected outlier observations, especially
among the ones not used in training process, suggesting a properly understanding of
the normal condition by the models defined by both algorithms. Note that, in this case,
there is no indications about the existence of neither damage nor extreme operational and
environmental variability in the data set. Thus, nonlinear patterns are not expected in
the corresponding DIs.

Furthermore, the importance of this result is rooted on the fact that this scenario is
close to the ones found in real-world monitoring, where there is no indications of damage a
priori, which permits one to reduce the number of false alarms and increase the reliability
of the SHM system.

4.4.2 Cluster-based approaches

Herein, the same evaluation procedure used previously for Z-24 Bridge is em-
ployed. Thus, the ACH-based approach coupled with divisive initialization is compared
to the MSD- and GMM-based ones. Therefore, Table 7 summarizes the number of Type
I errors for each approach using test matrix. In this case, the MSD has performed the
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Table 7 – Number of clusters and percentage of Type I errors for cluster-based approaches
using the daily data set from the Tamar Bridge.

Approach 𝐾 Type I
ACH 1 33 (5.48%)
MSD 1 23 (3.82%)
GMM 3 69 (11.46%)

best result in terms of classification performance, reaching 3.82% of Type I errors. How-
ever, the ACH outputted a reasonable number of Type I errors (5.48%) by modeling the
structural dynamic response as only one data cluster, as well as MSD implicitly assumes.
It indicates that the linear behavior of the structure allows to model its normal condition
using only linear approaches. As the MSD-based approach learns only linear influences its
performance has overcome the alternative methods. Due to the ACH algorithm applies
an agglomerative learning procedure it is able to verify this linear behavior by modeling
the structural response as only one data cluster. On the other hand, the GMM algorithm,
which assumes the data formed by more than one Gaussian component, modeled the
normal condition using three clusters in an attempt to learn nonlinear influences. How-
ever, as the data is better modeled by only one cluster, the GMM-based approach does
not provide an appropriate modeling of normal condition, resulting in more than 11% of
misclassifications.

The DIs obtained from the test matrix are highlighted in Figure Figure 18. It
shows that for the GMM-based approach, a concentration of outliers in the data not used
in the training phase is observed, suggesting an inappropriate modeling of the normal
condition. On the other hand, the ACH-based approach seems to output a random pattern
among the expected outlier observations, especially among the ones not used in training
process, suggesting a properly understanding of the normal condition by the unique cluster
defined over the training data. When comparing the ACH- and MSD-based approaches,
one can figure out that the MSD has performed a more adequate filtering of the normal
variations than ACH. This behavior is expected due to the properties of the data set.
As demonstrated by (FIGUEIREDO et al., 2012), the data arising from Tamar Bridge
follows, approximately, a unique multivariate normal distribution, benefiting the modeling
by MSD. Although the ACH does not perform any normal assumption, its general results
demonstrate high reliability, leading a reasonable number of misclassifications by learning
a simple model and verifying the same linear relationship as MSD.
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Figure 18 – Damage indicators along with a threshold defined over the training data for
Tamar Bridge: (a) ACH-, (b) MSD-, and (c) GMM-based approaches.

4.5 Overall analysis
In general, for the Z-24 Bridge, one can figure out that the proposed approaches

have outperformed the corresponding state-of-the-art ones, in terms of minimization of
misclassifications and removing of nonlinear effects derived, mainly, from colder periods.
In this case, both the DSA- and ACH-based approaches performed the better balance
between Type I/II errors, as can be seen in Table 8. The KPCA- and GMM-based ap-
proaches tried to establish the same balance, however the limitations imposed by their
model properties embarrass the proper learning of normal conditions. In the case of the
novel cluster-based approach, it results can be pointed out as the remarkable one, as
it reaches better results compared to the traditional ones based on PCA and cluster
analysis using a very simple model. Regarding the DSA-based approach, its modeling
demonstrated to be the best one in terms of minimization of Type I/II errors, performing
even better than ACH-based approach. However, in comparison to the ACH, the DSA
model does not provide any intuitions about the sources of variability, in contrast to the
novel approach that allows to infer the main global structural state conditions of the
structure by clustering similar observations regarded to the main influences at a present
time period.
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Table 8 – Comparison with the best machine learning approaches.

Data set Approach Type I Type II Total

Z-24 Bridge
DSA 165 (4.76%) 4 (0.87%) 169 (3.30%)
ACH 188 (5.41%) 6 (1.29%) 194 (4.93%)

KPCA 180 (5.19%) 4 (0.87%) 184 (4.68%)

Tamar Bridge

DSA 27 (4.49%) ——— 27 (4.49%)
ACH 33 (5.48%) ——— 33 (5.48%)
PCA 25 (4.15%) ——— 25 (4.15%)
MSD 23 (3.82%) ——— 23 (3.82%)

One important note is the carried out analysis are based on the fact that for
real-world applications a suitable approach should not only minimize the false-negative
indications of damage, for safety issues, but also minimize as much as possible the number
of false-positive indications of damage, regarding economic factors.

On the other hand, from the Tamar Bridge results, one can infer that the absence
of nonlinear variations has embarrassed the modeling performed by nonlinear methods,
such as KPCA-, AANN- and GMM-based approaches, which are not robust enough to
learn linear variations without overfit the training data. On the other hand, the linear
approaches, based on PCA and MSD have learned, adequately, the normal conditions. This
behavior is a natural one due to the specific purposes derived for each technique (e.g.,
nonlinear approaches to model nonlinearities and linear ones to model linear influences).
However, the approaches based on DSA and ACH reached a similar performance than the
ones based on linear PCA and MSD, allowing to conclude that the proposed techniques
provide a robust modeling capable to learn linear and nonlinear influences with similar
ability. Thus, both approaches demonstrate to be general purpose methods, which can be
employed in scenarios where the structural manager has few informations regarding the
sources of variability and the actual condition of structure.
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5 Conclusions, future research and published
works

5.1 Main conclusions
The correct monitoring and evaluation of structures with an arbitrary level of com-

plexity depends mainly on robust approaches to separate the changes in sensor readings
caused by damage from those caused by changing operational and environmental condi-
tions. Herein, in an effort to address the issues related to this challenge, novel machine
learning algorithms were proposed for modeling the normal condition of structures by pos-
ing the SHM as an SPR paradigm. Therefore, this dissertation is mainly concerned with
damage detection by means of output-only approaches. Even though these approaches
can be employed for any kind of structures, the methods were especially posed for SHM
bridge applications.

Specifically, this work significantly contributes to the SHM field by proposing the
first application of deep learning algorithms in the context of data normalization and
feature classification, as well as it proposes a novel and original agglomerative procedure
for clustering the normal condition by inflation of concentric hyperspheres. This novel
agglomerative concentric hypersphere (ACH) algorithm evaluates the spacial geometry
and sample density of each cluster, and can be though as an important advance to cluster-
based methods, as it does not require any input parameters (except training matrix) and
excludes the need for measures related to the sources of variability. Furthermore, it does
not assume any particular distribution to the data, allowing its application in real-world
monitoring scenarios without prior knowledge from the type of structural response. On the
other hand, the applied deep stacked autoencoder (DSA) arises as an improved algorithm
to perform NLPCA, circumventing the drawbacks related to the traditional PCA-based
approaches (e.g., data normality assumptions, definition of hyperparameters and issues
related to the model of normal condition in structures with different behaviors when
subjected to linear/nonlinear variations). Both algorithms have overcome some of the
best approaches available in literature up to this moment.

The proposed approaches were compared with traditional ones based on PCA
(linear PCA, AANN and KPCA) and cluster analysis (MSD and GMM), through their
application on two conceptually different but real-world data sets, from the Z-24 and
Tamar Bridges, located in Switzerland and United Kingdom, respectively. The structures
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were subjected to strong known environmental and operational influences, which cause
structural changes due mainly to nonlinear effects of freezing and boundary conditions
like thermal expansions and contractions.

In terms of overall analysis, as verified on the test bed structures, the proposed
approaches demonstrate to be: (i) as robust as their respective traditional ones to de-
tect the existence of damage; and (ii) potentially more effective to model the baseline
condition and to remove the effects of the operational and environmental variability, as
suggested by the minimization of misclassifications on the data from both structures. In
a global perspective is concluded that DSA has the best classification performance in
terms of minimization of Type I/II errors, indicating to be the most appropriated method
when the main goal is attenuate misclassifications. Additionally, the ACH algorithm also
demonstrated high reliability to model the normal condition and minimize misclassifica-
tions.

Even though that the DSA provides the most robust model, the ACH has the
advantage to provide a model capable to carry out physical interpretations related to the
sources of variability that alter the structural responses (i.e., each cluster can be related
to a different source of variability changing the structural properties at a given period).
In this context, the DSA provides a black-box model, which does not provide physical
meanings, and not even contribute to the increasing of knowledge related to the nature
and behavior of the structure. At this point, we can pose the ACH algorithm in the
context of the well-known theorem that there is no free lunch, in which machine learning
algorithms are classified in one of two classes: (1) specialized methods for some category of
problems and (2) methods that maintain a reasonable performance in the solution of most
part of problems. Thus, the ACH fits the category in which results are often acceptable,
independently of the structure complexity, with an addendum of providing a model that
allows physical interpretation. The chosen method for deployment in real monitoring
scenarios depends highly on the monitoring goals (e.g., minimization of misclassifications
is the only concern or model interpretation is also a major issue).

5.2 Future research topics
In the future it is intended to further explore the capabilities of deep learning

algorithms for feature extraction, as a manner to diminish the level of expertise required
to extract damage-sensitive features, which currently varies from the kind of structure
and nature of damage to be detected. Also, the deep neural networks can be used in the
context of time-series analysis for prediction of unusual behaviors that may be related to
damage occurrence in a structural system.

For the ACH-based approach, novel distance metrics and density functions can be
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used to improve the estimation of data clusters, as well as increase the damage detection
performance. Other real-world or simulated data sets with different type of normal effects
and damage can be tested using the proposed approaches, as a manner to verify their
general performance to overcome most kind of operational and environmental influences.

5.3 Published works
The main original works that support this dissertation are addressed in follow.

The articles are organized in accordance to the period of publication and type of media
(journal or conference).

Original works published in international journals:

1. MOISÉS SILVA; ADAM SANTOS; REGINALDO SANTOS; ELOI FIGUEIREDO;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “Agglomerative concentric hy-
persphere clustering applied to structural damage detection”, Mechanical Systems
and Signal Processing, 2017.

2. ADAM SANTOS; REGINALDO SANTOS; MOISÉS SILVA; ELOI FIGUEIREDO;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “A Global Expectation-Maximization
Approach Based on Memetic Algorithm for Vibration-Based Structural Damage De-
tection”, IEEE Transactions on Instrumentation and Measurement, 2017.

3. ADAM SANTOS; MOISÉS SILVA; REGINALDO SANTOS; ELOI FIGUEIREDO;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “A global expectation-maximization
based on memetic swarm optimization for structural damage detection”, Structural
Health Monitoring, 2016.

4. ADAM SANTOS; ELOI FIGUEIREDO; MOISÉS SILVA; REGINALDO SANTOS;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “Genetic-based EM algorithm
to improve the robustness of Gaussian mixture models for damage detection in
bridges”, Structural Control & Health Monitoring, 2016.

5. MOISÉS SILVA; ADAM SANTOS; ELOI FIGUEIREDO; REGINALDO SANTOS;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “A novel unsupervised approach
based on a genetic algorithm for structural damage detection in bridges”, Engineer-
ing Applications of Artificial Intelligence, 2016.

Original works published in international conferences:

1. MOISÉS SILVA; ADAM SANTOS; REGINALDO SANTOS; ELOI FIGUEIREDO;
CLAUDOMIRO SALES; JOÃO C. W. A COSTA. “A structural damage detection



Chapter 5. Conclusions, future research and published works 51

technique based on agglomerative clustering applied to the Z-24 Bridge”, 8th Euro-
pean Workshop on Structural Health Monitoring (EWSHM), 2016, Bilbao.

2. ADAM SANTOS; MOISÉS SILVA; REGINALDO SANTOS; ELOI FIGUEIREDO;
CLAUDOMIRO SALES; JOÃO C. W. A. COSTA. “Output-only structural health
monitoring based on mean shift clustering for vibration-based damage detection”,
8th European Workshop on Structural Health Monitoring (EWSHM), 2016, Bilbao.
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A Theoretical properties

To provide a reliable proof of convergence for the ACH algorithm, it is necessary
to provide some intuition about data distribution in the expendable case and the corre-
sponding behavior of ACH. Since X ∈ R𝑛×𝑚 is composed of the training examples and
C is composed of 𝐾 sets of values disposed in the feature space, it becomes possible to
infer two propositions inherent to the model with greater computational cost. The first
proposition concerns to the maximum number of necessary iterations to the most external
loop (lines 2 to 19) before convergence.

Proposition 1. Assuming that C is composed of non empty clusters c1, c2, · · · , c𝐾 ∈ R𝑚,
admitting the same operations such as c𝑖 ⊆ C and X has only one real data cluster to be
defined, then among the 𝐾! possible permutations of centroids there is at least one which
makes necessarily 𝐾2+𝐾−2

2 iterations before the algorithm converges.

Proof. Since C admits anyone of the 𝐾! combinations of its elements, there is unless
one to keep the centroids distributed on the feature space in a such manner that the
algorithm needs 𝐾 + (𝐾 − 1) + (𝐾 − 2) + · · · + 2 = 𝐾2+𝐾−2

2 loops to determine only one
cluster describing the actual data shape. This occurs due to the algorithm merges only
two components per iteration, in the worst case, forcing the algorithm to check all the
components previously verified.

The second proposition derives from the first and establishes a limit of iterations to
the most internal loop (lines 7 to 14 in Algorithm 1), defining the number of hyperspheres
in a same component.

Proposition 2. Being the increment value of the hypersphere radius defined by Equation
3.2 (Section 3.2.1) and c𝑖 is close to the geometric center of the component, then the
maximum number of hyperspheres 𝐻𝑦 before the algorithm converges is given by

𝐻𝑦 ≤
⌈︃

max(‖c𝑖 − x‖)
𝑅0

⌉︃
, ∀x ∈ X. (A.1)

Proof. When a centroid is positioned on the center of a real component (or in its neigh-
bourhood), the hypersphere radius increases as an AP with a common difference equal to
𝑅0. Thus, one can naturally conclude that the hypersphere radius is never greater than
the component radius. When the hypersphere reaches the border of the component, more
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sparser are the observations, which reduces the sample density compared to the last ACH
iteration, leading to the convergence of the algorithm.
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B Complexity proof

Based on previous propositions, this section provides the asymptotic complexity
proof. However, before to start the analysis, some required cost informations are intro-
duced. To estimate a superior limit it is necessary associate a maximum cost value to the
execution of each instruction line. For each simple line (e.g., arithmetic operations and
logic comparisons) it is assumed a constant value equal to one. On the other hand, to the
lines with function calls, the cost is calculated based on some analytical considerations.

Initially, one should analyze the lines with constant cost. The line 1 classifies each
observation as belonging to a cluster, which gives a cost equal to 𝐾 ×𝑛. In similar manner,
to dislocate 𝐾 centroids it is imperative to evaluate 𝑛 observations in a 𝑚-dimensional
space. Thus, the line 3 assumes a cost equal to the product between the feature space
dimension 𝑚 and the number of training data points 𝑛 added to the number of centroids 𝐾.
The line 4 is responsible for selecting the current pivot centroid. If none merges occurred
in the last iteration, the next centroid in the set 𝐶 is selected, otherwise the first centroid
is chosen. To this line a constant cost is also assumed.

To compute a component radius, in the worst case, it is necessary evaluate 𝑛 − 1
observations. In this case, the line 5 has a complexity of 𝑛 − 1. The line 9 indicates
which points are inside the hypersphere, being necessary analyze all the 𝑛 points in the
training matrix X, deriving a complexity equal to 𝑛. In a similar manner, to compute the
sample density of a hypersphere, the line 11 needs a maximum of 𝑛 × 𝑚 iterations before
convergence.

The function in the line 15 analyzes all the centroids in each iteration to define
which ones can be merged. This process results in a complexity equal to | C |. In the
line 17, a new function call to 𝑐𝑎𝑙𝑐𝐼𝑛𝑑𝑒𝑥𝑒𝑠 is made. As the number of centroids may
be reduced over the iterations, this line cost depends on the cardinality of the set C.
However, asymptotically one can apply the same cost assumed to the line 1.

To understand the maximum complexity estimated in the line 9, the Proposition 2
discussed previously is required. It is assumed that, when there is only one cluster defined
by the data and 𝐾 > 1, the maximum number of built hyperspheres depends of the
component radius. Therefore, the number of iterations in the line 9, in the worst case,
is equal to

⌈︁
max(‖c𝑖−x‖)

𝑅0

⌉︁
. In a solution with K centroids it is possible to infer successive

merges performed two by two until one centroid remains. In this case, after each merge,
all the components are revalidated. Thereby, the complexity is equivalent to an AP with
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common difference and initial term equal to two and one, respectively.

Adding the cost of all terms and multiplying those inside loops by the maximum
number of iterations in Proposition 1 derives

𝐹 (𝐾, 𝑛, 𝑚) =
(︃

𝐾2 + 𝐾 − 2
2

)︃(︃
(𝑛 − 1) + 7 + 𝐻𝑦(𝑚𝑛 + 𝑛 + 4) + (𝑛 + 1)(𝐾2 + 𝐾 − 2)

2

)︃
+ 𝑛𝐾 + 𝑛𝑚 + 𝐾,

ordering and excluding components of less asymptotic order result in

𝐹 (𝐾, 𝑛, 𝑚) =
(︃

𝑛𝐾2 − 𝐾2 + 7𝐾2 + 𝑛𝑚𝐾2𝐻𝑦 + 4𝐾2𝐻𝑦 + 2𝑛𝐾 + 2𝑛𝑚 + 2𝐾

2

)︃

+
(︃

𝑛𝐾4 + 𝐾4 + 2𝑛𝐾3 + 2𝐾3 + 𝐾2 + 4
4

)︃

−
(︃

3𝑛𝐾2 + 4𝑛𝐾 + 4𝐾 + 4𝑛

4

)︃
,

< 𝑛𝑚𝐾2𝐻𝑦 + 𝑛𝐾4 + 2𝑛𝐾3 + 𝑛𝐾2 + 𝐾4 + 4𝐾2𝐻𝑦 + 2𝐾3

+ 6𝐾2 + 2𝑛𝑚 + 2𝑛𝐾 + 𝐾2 + 2𝐾 + 4 − 3𝑛𝐾2 − 4𝑛𝐾 − 4𝑛 − 4𝐾,

< 𝑛𝑚𝐾2𝐻𝑦 + 𝑛𝐾4 + 2𝑛𝐾3 + 𝑛𝐾2 + 𝐾4 + 4𝐾2𝐻𝑦 + 2𝐾3 + 2𝑛𝑚

+ 2𝑛𝐾 + 6𝐾2 + 𝐾2 + 2𝐾.

Initially, one may suppose the term 𝑛𝐾4 as the one with highest complexity or-
der. However, the asymptotic curve of the term 𝑛𝑚𝐾2𝐻𝑦 is greater due to 𝐾 ≪ 𝑚.
Substituting 𝐻𝑦 and 𝑅0

𝐹 (𝐾, 𝑛, 𝑚) = 𝑛𝑚𝐾2𝐻𝑦,

= 𝑛𝑚𝐾2
⌈︃

max(‖c𝑖 − x‖)
𝑅0

⌉︃
,

= 𝑛𝑚𝐾2
⌈︃

max(‖c𝑖 − x‖)
log10 (‖c𝑖 − x𝑚𝑎𝑥‖ + 1)

⌉︃
,

≃ 𝑛𝑚𝐾2 max(‖c𝑖 − x‖)
log10 (‖c𝑖 − x𝑚𝑎𝑥‖ + 1) .

In the worst case, due to only one distribution fits the entire data (i.e., 𝐾 = 1) it
is assumed 𝐷 = max (‖c𝑖 − x‖) = ‖c𝑖 − x𝑚𝑎𝑥‖, then
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𝐹 (𝐾, 𝑛, 𝑚) = 𝑛𝑚𝐾2 𝐷

log10 (𝐷 + 1) ,

= 𝑛𝑚𝐾2 log10 (𝐷 + 1)−𝐷 .

Finally, one can conclude the algorithm computational complexity as

𝒪
(︁
𝑛𝑚𝐾2

)︁
.

When 𝐾 ≈ 𝑛, the asymptotic complexity becomes a third order function. This
is a little worse than most of the traditional cluster-based algorithms in literature, such
as k-means and fuzzy c-means (GHOSH, 2013). However, its agglomerative characteristic
allows to model, at the same time, the data shapes and discover the optimal number of
clusters. This can be pointed out as an advance over other clustering approaches that
require offline mechanisms to infer the number of clusters.
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